Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What are the properties of photons and electrons? What the hell do they have to do with each other?

来源: | 作者:佚名 | 发布时间 :2023-12-02 | 696 次浏览: | Share:

- About "The spin directions of the two electrons must be opposite at the same time"

The fact that electrons have different spin directions is suspicious, especially for electrons orbiting the nucleus. Because it has to do with the formation of electrons. How did so many electrons form in the universe? There should be three ways. In one way, two photons with a mass equal to that of an electron each intersect at a relative speed of 300,000 kilometers per second at a certain Angle to synthesize an electron. The electrons produced in this way should be few and far between, and would only be produced in an environment like Earth with plants and clouds. So, for the vast majority of electrons that exist in the universe, they must have been created in the other two ways. One way is that the electrons are formed in the black hole by the centripetal pressure and expansion pressure of the black hole. (In the black hole, the independent hot particles are also squeezed into the two elementary particles, protons and neutrons.) Another way electrons are produced is when protons and neutrons break apart. Therefore, the vast majority of electrons in the universe should be formed in black holes. That is to say, most of the conditions for the formation of electrons are the same, so its properties should also be consistent, or the same. The spin of an electron is one of its properties. Therefore, the spin of the electron should also appear to be consistent and identical in direction, and should not be positive or negative.

"If the outermost electron gains enough energy, the electron will be freed from its nucleus and become a free electron."

It is an objective fact that the extranuclear electrons can get rid of the bondage of the nucleus and become free electrons under certain conditions. Triboelectrification is the expression of electrons escaping the bonds of atomic nuclei and becoming free electrons. But what are the conditions under which an extranuclear electron can become a free electron? It should be the expansion effect caused by the large and rapid increase of hot particles, rather than the absorbed energy of electrons. Let us take the example of triboelectricity to show how the expansion effect of a large and rapid increase in hot particles causes the extranuclear electrons to become free. To rub something is to exert a force of friction on it. This friction will destroy the electrons in the surface atoms of the object and even the protons and neutrons in the nucleus. The result of destruction is that some electrons, protons, and neutrons in the surface atoms of the object are decomposed and reduced to independent hot particles (the heat generated by friction is the manifestation of the existence of independent hot particles). The volume of electrons, protons, neutrons, which were originally dense, will expand suddenly after being decomposed into independent hot particles, and this sudden volume is a force. It is this sudden expansion force that pushes out some of the other extraneous electrons in the object being rubbed and becomes free electrons. So, instead of "the outermost electron gaining enough energy" to become a free electron, the volume of the electron, proton, and neutron after being broken down into independent hot particles suddenly expands and pushes the extranuclear electron out of the nucleus and becomes a free electron.

"The photoelectric effect does not mean that a photon can be converted into an electron, but that when an electron absorbs a photon of a certain energy, it becomes a free electron and can generate an electric current."

The photoelectric effect is definitely the corresponding conversion of photons into electrons. Of course, the conversion of particle matter such as photons into particle matter such as electrons needs to meet certain conditions. For example, it must be two particles of light with a mass equal to that of an electron to synthesize an electron. For example, two light particles whose mass is equal to that of an electron each intersect with the kinetic energy of 300,000 kilometers per second and at a certain Angle to form an electron. Biosemiconductors in plants (i.e., chloroplasts) and man-made semiconductors use this mechanism to synthesize electrons from sunlight. We can also prove in reverse perspective that "the photoelectric effect does not mean that photons can be converted into electrons, but that when electrons absorb photons of a certain energy, they become free electrons, and they can generate current" is wrong. For example, if we put a solar panel and an iron plate in the same place to receive sunlight, then the electrons in them at the same time "absorb photons of a certain energy", why the temperature of the iron plate will rise sharply but not produce current, while the solar panel will produce current? This is because the iron plate does not have the conditions to convert sunlight into electrons, while the solar panel has the conditions to convert sunlight into electrons. Therefore, after the solar energy hits the iron plate with a strong kinetic energy of 300,000 kilometers per second (that is, the so-called photon that absorbs a certain energy), it is completely and completely decomposed and reduced to an independent state of hot particles. Some of the sunlight enters the solar panel at a powerful kinetic energy of 300,000 kilometers per second, and is converted into electrons by artificial semiconductors and forms an electric current. Therefore, photons can be converted into electrons and form an electric current. Instead, electrons become free electrons when they absorb photons of a certain energy.

  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay