Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Principle and efficiency of microbial fuel cell power generation

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 271 次浏览: | Share:

In most studies, the microbial fuel anode is attached to the air cathode.

The voltage is calculated by Ohm's law.

The surface area of the anode is its geometric area.

Open circuit measurement.

Short circuit measurement.

Flow field and fluid dynamics of direct microbial fuel cells

In the direct microbial fuel cell, the cathode chamber and the anode chamber constitute two different flow fields, which provide a place for microbial growth, reproduction and catalysis, while the microbial fuel cell also uses the battery electrode to replace the original natural electron acceptor of the microorganism, through the continuous transfer of electrons to generate electricity.

The electrons generated by the microbial oxidized fuel are transferred to the anode through the cell membrane associated group or through the REDOX mediator and then transferred to the cathode through the external circuit. In the cathode region electrons reduce electron acceptors (such as oxygen) and then combine with protons transferred through the proton exchange membrane to form water

Flow field: During the entire process of using organic matter to generate electricity in microbial fuel cells, biocatalytic particles or microorganisms constantly move in the flow field, accelerating the rapid renewal of reaction particles on the electrode surface and promoting the transfer of electrons on the anode surface.

Structure, design and assembly of direct microbial fuel cells

The structural design and assembly of direct microbial fuel cells is the key to their application. Microbial fuel cells are generally divided into two categories: one cell type and two cell type. The two-compartment microbial fuel cell is widely used, which has an anode chamber and a cathode chamber.

Separator materials: At present, the separator materials used by microbial fuel cells are mainly: proton membrane, salt bridge, glass beads, glass fiber and carbon paper, etc., and proton membrane is widely used. At present, the commonly used carbon paper is Taiwan carbon energy brand.

In terms of diaphragm materials, the structure of two-compartment microbial fuel cells is complex, and the mass transfer resistance of one-compartment microbial fuel cells is less than that of two-compartment microbial fuel cells because of the omission of cathode chamber. Attempts have been made to hot-press the cathode and the proton membrane together to reduce the resistance of proton transfer in the cathode chamber. The surface of carbon cloth electrode is coated or sprayed with proton exchange resin to make cathode - proton film type and anode - proton film - cathode type microbial fuel cell electrode.

Research battery materials should be considered

The problems of biological reaction system, as mentioned above, mainly involve the electrical production performance of microorganisms, media engineering, and the electron transfer path in the process of microbial degradation of organic and inorganic pollutants, which affect the performance of microbial system;

The relationship between the structure of the microbial fuel cell itself and the pollutant treatment capacity and the material properties of the microbial fuel cell.

Cathode materials: The commonly used cathode materials for microbial fuel cells are carbon paper, carbon cloth and carbon yarn, graphite, graphite plate and graphite rod. Recent research and development of new materials are often based on the above mentioned materials to improve.

Anode materials: Unlike the typical anode reactions used in chemical fuel cells, microbial fuel cells have a more complex reaction on the anode due to the involvement of microorganisms and chemicals. Therefore, the anode material must also have good biological adaptability, excellent electrical conductivity, corrosion resistance, high specific surface area and high porosity.

Diaphragm material: In laboratory scale microbial fuel cell experiments, well-known membranes, such as proton exchange membrane (Nation-liT), cation exchange membrane (CEM-1-UltrexTM CMI7000), anion exchange membrane (Fumasep FAD), bipolar membrane (Fumasep FBM), etc. But in practice, some membranes without electrical properties, such as microfiltration membranes, have also been introduced as an option for microbial fuel cell research.

Model calculation of microbial fuel cell

Based on the Monod equation, the anode chamber can be regarded as a microbial reactor. Using the theory of microbial electrochemistry, the relationships among parameters of matrix degradation, microbial growth and power generation capacity can be expressed by mathematical models.

In the microbial fuel cell process system, the main problems existing in the application process control are as follows:

The reaction process of microbial fuel cell is complex. The whole processing process is composed of several operating units, in the same unit and a number of completely different reactions, including physicochemical and electrobiological reactions.

Many of the parameters that affect the characteristics of the system are difficult to control (such as instantaneous flow, organic input changes, toxic input and inlet temperature, etc.).

  • GE DS200DCFBG2BNC MRP569662 DC Feedback Board
  • GE IC695CPE400-ABAB Controller
  • GE DS200DCFBG2BNC MRP433745 Drive Control Board
  • GE DS200DCFBG2BNC MRP420024 DC Feedback Board
  • GE IS200PPPBH2CAA power module
  • GE IS210MACCH2AGG Compact Controller
  • GE IS200AEPAH1AFD Printed Circuit Board
  • GE IS200AEPAH1ACB redundant power module
  • GE IS200WREAS1ADB Relay Output Module
  • GE IS200AEPAH1AHD Printed Circuit Board
  • GE IS200WEMAH1AEA Wind Energy Main Assembly
  • GE IS210MACCH1AGG Turbine Control Module
  • GE IS230TNRLH1B Terminal Base Station Relay Module
  • GE DS200PCCAG1ACB Power Connection Card
  • GE DS200SI0CG1AEA Instant Overcurrent Card
  • GE DS200SHVMG1AGE servo valve interface module
  • GE DS200SI0CG1A6A Input/Output Module
  • GE DS200RT8AG3AHC Programmable Logic Controller
  • GE VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J Rack mounted Input/Output Module
  • GE WEA13-13 2508-21001 Embedded Digital Module
  • GE WES5120 2340-21004 Controller Main Module
  • GE WES5120 2340-21006 on-site control host
  • GE WESDAC D20ME 18-MAR-13 Excitation Control Module
  • GE D20 EME 27-APR-13 Input/Output Module
  • GE D20 EME 2400-21004 Substation Controller
  • GE SR745-W2-P1-G1-HI-A-L-R-E Transformer Protection Relay
  • GE SR745-W2-P1-G1-HI-A-L-R Transformer Management Relay
  • GE IS230TNDSH2A Independent Output Relay Module
  • GE IS200TDBSH2ACC Terminal Module
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-5576 high-speed fiber optic reflective memory
  • GE 760-P1-G1-S1-LO-A20-R-E feeder management relay
  • GE 760-P1-G1-S1-LO-A20-R 760 Series Management Relay
  • GE 760-P5-G5-S5-HI-A20-R-E Motor Management Relay
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed Circuit Board
  • GE IS210BPPCH1AEC Programmable Monitoring System
  • GE WESDAC D20ME II Remote Terminal Unit (RTU) Main Processor Card
  • GE IC693DSM302-AE Discrete Output Module
  • GE IS220PRTDH1A 336A4940CSP6 temperature sensor input module
  • GE IS420ESWBH3AX Ethernet Switch
  • GE EVPBDP0001 EVPBDP032 output module
  • GE V7668A-131000 350-93100076668-131000 B Control Module
  • GE IS200SPROH1AAB MRP663860 Turbine Protection Relay
  • GE VG5SK8I052311 PM0N2000 Digital Input Module
  • GE MVR1600-4601 air-cooled rectifier module
  • GE CT11T7F10PN1 PMC676RCTX V2.3 01 16 C1145 CR11 V2.X Network Interface Card
  • GE IS215UCVHM06A IS200PMCIH1ACC Controller
  • GE IC695CPU315-BB Programmable Logic Controller
  • GE WES5120 5120-1506 High Performance Field Controller
  • GE D20-PS LFDSC143-4000 processor
  • GE 8811-IO-DC 8811-IO-DC-01 Digital Input/Output Module
  • GE VMIVME-7750 VMIVMME-7750-834 350-02775-834 D Bus Interface Module
  • GE VMIVME-7750 VMIVMME-7750-760000 350-027750-76000 N Bus Processor
  • GE IS210BPPBH2BMD redundant power module
  • GE IS220PDIAH1A 336A4940CSP1 Discrete Input Module
  • GE IC698CMX016 VMIVME-5567-000 350-005567-000 Industrial Module
  • GE V7768-320000 350-9301007768-320000 A0 Controller Module
  • GE IS215VCMIH2CA IS200VCMIH2CAA Communication Interface Board
  • GE IS215UCVGM06A IS215UCVGH1A VMIVMME-7666-11000 Serial Communication Module
  • GE SR745-W3-P5-G5-HI Transformer Protection Relay
  • GE IS220PDIIH1B 336A5026ADP1 Input/Output Module
  • GE IS200SDIIH1ADB MRP683026 Contact Input Isolation Terminal Board
  • GE WESTEM D20 M++CNC System
  • GE SR745-W2-P1-G1-HI-E-H Generator Relay Protection Device
  • GE SR469-P5-HI-A20-H motor protection relay
  • GE IS200TDBTH6ACD gas turbine control system module
  • GE WESDAC D20 C Combination Module
  • GE IC698CMX016 Control Memory Switch Module
  • GE SRPE60A 40 rated plug
  • GE 94-164136-001 motherboard control board
  • ABB PCD237A101 3BHE028915R0101 excitation control module
  • ABB XZC826A102 3BHE036348R0102 control module
  • ABB SAFT183VMC Safety Monitoring and Control Module
  • ABB LD 810HSE EX 3BSE091722R1 fieldbus link equipment
  • ABB RED615 HCDCACADAAHC2BNN11E Line Differential Protection and Control
  • ABB UFC760BE41 3BHE004573R0141 Industrial Computer Board
  • ABB 1TGE120011R2200 Motor Feed Control Unit
  • ABB PM865 3BSE030193R1 Compact Programmable Controller
  • ABB MVR 0.44-10KA high-power motor control module
  • ABB AO810 Input/Output Module
  • ABB SPAU341C1-AA RS488003-AA numerical protection repeater
  • ABB DSTA131 2668180-48/2 Programmable Logic Controller
  • ABB COM00012RAA005844A0004J2RAA005696N Control Panel Module
  • ABB MR7557891MRS050640C power relay
  • ABB 2RCA025057A0001R safety relay
  • ABB 2RCA013892A0003H power relay
  • ABB 2RCA013655A0001H power relay accessories
  • ABB 07KT94-98 controller
  • ABB 1MRK002247 Apr04 Transformer Module
  • ABB UNS0884a-v1 3BHE004385R0001 current sensor
  • ABB WMDOLT2-A75 (65KA) 6E 1TGE106812P0001 Input and Output Board
  • ABB Uras26 F-No. 3.346368.0 A-No 0240462201/2030 Gas Chamber Detector
  • ABB UFC911B101 3BHE037864R0101 control board
  • ABB TU841 3BSE020848R1 Termination unit for 1+1 TB840
  • ABB REF541KM115AAA relay feeder protection
  • ABB NINT-71C main circuit interface board
  • ABB LS14250 lithium battery
  • ABB ICSF08D1 FPR3323101R1012 24VDC high-speed counter
  • ABB DO814 Input/Output System
  • ABB 769111B gas chamber detector
  • ABB CM10/00MU1E0/STD Process Controller
  • ABB 769154 A filter element
  • ABB 769137 C 13CO2-10% 0746919 E detector
  • ABB 0769143 A Sample cell (Al), 175 mm
  • ABB 0002-07-2-000001-01 BMXS Scientific Module (ADC)
  • ABB CM15/000S0E0/STD Universal Process Indicator
  • ABB BSD0750 servo drive
  • ABB CI854BK01 Communication Interface Module
  • ABB XVC772A102 3BHE0322285R0102 circuit board
  • ABB AI04 Input/Output System
  • ABB TU847 module terminal unit
  • ABB TB807 module bus terminator
  • ABB PP877K control panel
  • ABB AO845A eA Analog Output Module
  • ABB SD822 power supply equipment
  • ABB 3BHB006716R0277 SYN5302A-Z.V277 synchronizer
  • ABB GFD233A103 3BH02294R0103 Controller
  • ABB 129740-002 134177-001 Intelligent I/O Module
  • ABB XUD194 3BHE018137R0001 AC800PEC High Performance Controller
  • ABB T3N225 Circuit Breaker
  • ABB A30-30-10RT three pole AC contactor
  • ABB SYN5302A-Z, V217 3BHB006716R0217 digital synchronizer
  • ABB NBIO-31 3BSE011337R1 I/O and Expansion Control Module
  • ABB 5SHX1960L0006 3BHB016120R0002 3BHE019719R0101 GVC736BE101 High Voltage Inverter Module
  • ABB PPC905AE101 3BHE014070R0101 control module
  • ABB REF615E_E HBFHAEAGNBA1BNN1XE digital feeder protection relay
  • ABB XVC770BE101 3BHE02103R0101 circuit board module
  • ABB 3BHL000986P7001 redundant DC power supply unit