Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Principle and efficiency of microbial fuel cell power generation

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 269 次浏览: | Share:

summarize

Early microbial fuel cells mainly used microbial fermentation products as battery fuel to generate electricity. Potter, a British botanist, was the first to carry out this research. He experimented with yeast and E. coli and found that microorganisms could generate electricity.

principle

Microbial fuel cell refers to a device that converts chemical energy into electrical energy under the catalysis of microorganisms.

sort

The microbial fuel cell consists of two cathode cells and two anode cells separated by a proton exchange membrane. This kind of microbial fuel cell is called a two-compartment microbial fuel cell, and the unseparated microbial fuel cell is called a single-compartment microbial fuel cell. According to the different modes of electron transfer, micro-biofuel cells can be divided into direct microbial fuel cells and indirect micro-biofuel cells.

Indirect microbial fuel cells

Principle: The working principle of indirect biofuel cells is to use pollutants as substrates, which are oxidized under the action of microbial extracellular enzymes, and converted into electrons transferred to electrodes through the oxygenation and reduction process of intermediaries.

Requirements for acting as an intermediary:

Easy passage through the cell wall;

Easy access to electrons from electron acceptors on cell membranes;

Electrode reaction is fast;

Good solubility, stability, etc.

Non-toxic to microorganisms;

Can't be microbial food.

For example, in recent years, the research on finding efficient microbial catalysts has gradually become a hot spot in the research of microbial fuel cells. In theory, a variety of microorganisms may be used as catalysts for biofuel cells, often using Escherichia coli, common variant bacillus (Proteusvulgaris) and so on.

Direct microbial fuel cells

Features:

A variety of organic and inorganic substances can be used as fuels, and even the pollutants in sewage can be used as fuels.

It can work in normal temperature, normal pressure and near-neutral environment, with low maintenance cost and strong operation safety;

In the application can purify pollutants and convert them into useful substances, can achieve zero emissions;

Microbial fuel cells can also convert substrates directly into electrical energy, which has a high resource utilization rate.

Eliminate no secondary pollution, achieve a low-carbon economy, the environment and the real sustainable development of the economy.

Effects of electrodes on microbial activation in direct microbial fuel cells

In direct microbial fuel cells, a very important factor affecting the electron transfer rate is the electrode composition of the cathode and anode, so people can improve the performance of micro-bio-fuel cells by improving the cathode and anode materials and changing the electrode surface area.

Anode: The anode of the microbial fuel cell is mainly made of carbon as a substrate, including carbon paper, carbon cloth, graphite sheets (rods), carbon felt and graphite foam. At present, researchers have studied the differences between various materials and the effects of various anode characteristics on battery performance. In these studies, two-compartment microbial fuel cell experimental equipment was used.

The effects of pore volume, surface area, pore size distribution, surface roughness and surface potential on the electrical performance of anode were investigated by selecting specific anode materials.

Thin carbon paper, thick carbon paper, carbon felt: carbon felt has the lowest internal resistance, the highest biomass, that is, the highest maximum output power; Thin carbon paper has the highest internal resistance, the lowest biomass and the lowest corresponding maximum output power.

When investigating the effect of surface roughness on the electrical production performance of microbial fuel cells, the same graphite electrode was polished with 2000 mesh and 150 mesh sandpaper respectively. After grinding, the surface particle size of the two electrodes was 7.5 million and 100pm, respectively. Two batteries of E. The change over time is shown as follows:

In order to further confirm the influence of anode material surface potential on microbial electricity generation, 3 microbial fuel cells were run continuously for 5d under different initial potential. The changes of anode potential over time are shown in the figure below:

Positive potential applied to the anode can affect the adhesion rate of microorganisms

Proton exchange membrane

In microbial fuel cells in the anode chamber and cathode chamber (or cathode), usually need to be physically separated, the separation materials currently used are proton membrane, salt bridge, glass beads, glass fiber and carbon paper, which salt bridge, glass beads and glass fiber, proton membrane is a choice of permeable membrane, with good proton conductivity. At the same time, it can prevent the oxygen in the cathode chamber from being transferred to the anode chamber, and ensure that the anode chamber maintains an anoxic state.

Intermediates and catalytic microorganisms for direct microbial fuel cells

In different types of microbial fuel cells, the bioelectrode mediator and the main catalytic microorganism, as well as the electron transfer pathways and electron acceptors involved.

  • GE DS200DCFBG2BNC MRP569662 DC Feedback Board
  • GE IC695CPE400-ABAB Controller
  • GE DS200DCFBG2BNC MRP433745 Drive Control Board
  • GE DS200DCFBG2BNC MRP420024 DC Feedback Board
  • GE IS200PPPBH2CAA power module
  • GE IS210MACCH2AGG Compact Controller
  • GE IS200AEPAH1AFD Printed Circuit Board
  • GE IS200AEPAH1ACB redundant power module
  • GE IS200WREAS1ADB Relay Output Module
  • GE IS200AEPAH1AHD Printed Circuit Board
  • GE IS200WEMAH1AEA Wind Energy Main Assembly
  • GE IS210MACCH1AGG Turbine Control Module
  • GE IS230TNRLH1B Terminal Base Station Relay Module
  • GE DS200PCCAG1ACB Power Connection Card
  • GE DS200SI0CG1AEA Instant Overcurrent Card
  • GE DS200SHVMG1AGE servo valve interface module
  • GE DS200SI0CG1A6A Input/Output Module
  • GE DS200RT8AG3AHC Programmable Logic Controller
  • GE VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J Rack mounted Input/Output Module
  • GE WEA13-13 2508-21001 Embedded Digital Module
  • GE WES5120 2340-21004 Controller Main Module
  • GE WES5120 2340-21006 on-site control host
  • GE WESDAC D20ME 18-MAR-13 Excitation Control Module
  • GE D20 EME 27-APR-13 Input/Output Module
  • GE D20 EME 2400-21004 Substation Controller
  • GE SR745-W2-P1-G1-HI-A-L-R-E Transformer Protection Relay
  • GE SR745-W2-P1-G1-HI-A-L-R Transformer Management Relay
  • GE IS230TNDSH2A Independent Output Relay Module
  • GE IS200TDBSH2ACC Terminal Module
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-5576 high-speed fiber optic reflective memory
  • GE 760-P1-G1-S1-LO-A20-R-E feeder management relay
  • GE 760-P1-G1-S1-LO-A20-R 760 Series Management Relay
  • GE 760-P5-G5-S5-HI-A20-R-E Motor Management Relay
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed Circuit Board
  • GE IS210BPPCH1AEC Programmable Monitoring System
  • GE WESDAC D20ME II Remote Terminal Unit (RTU) Main Processor Card
  • GE IC693DSM302-AE Discrete Output Module
  • GE IS220PRTDH1A 336A4940CSP6 temperature sensor input module
  • GE IS420ESWBH3AX Ethernet Switch
  • GE EVPBDP0001 EVPBDP032 output module
  • GE V7668A-131000 350-93100076668-131000 B Control Module
  • GE IS200SPROH1AAB MRP663860 Turbine Protection Relay
  • GE VG5SK8I052311 PM0N2000 Digital Input Module
  • GE MVR1600-4601 air-cooled rectifier module
  • GE CT11T7F10PN1 PMC676RCTX V2.3 01 16 C1145 CR11 V2.X Network Interface Card
  • GE IS215UCVHM06A IS200PMCIH1ACC Controller
  • GE IC695CPU315-BB Programmable Logic Controller
  • GE WES5120 5120-1506 High Performance Field Controller
  • GE D20-PS LFDSC143-4000 processor
  • GE 8811-IO-DC 8811-IO-DC-01 Digital Input/Output Module
  • GE VMIVME-7750 VMIVMME-7750-834 350-02775-834 D Bus Interface Module
  • GE VMIVME-7750 VMIVMME-7750-760000 350-027750-76000 N Bus Processor
  • GE IS210BPPBH2BMD redundant power module
  • GE IS220PDIAH1A 336A4940CSP1 Discrete Input Module
  • GE IC698CMX016 VMIVME-5567-000 350-005567-000 Industrial Module
  • GE V7768-320000 350-9301007768-320000 A0 Controller Module
  • GE IS215VCMIH2CA IS200VCMIH2CAA Communication Interface Board
  • GE IS215UCVGM06A IS215UCVGH1A VMIVMME-7666-11000 Serial Communication Module
  • GE SR745-W3-P5-G5-HI Transformer Protection Relay
  • GE IS220PDIIH1B 336A5026ADP1 Input/Output Module
  • GE IS200SDIIH1ADB MRP683026 Contact Input Isolation Terminal Board
  • GE WESTEM D20 M++CNC System
  • GE SR745-W2-P1-G1-HI-E-H Generator Relay Protection Device
  • GE SR469-P5-HI-A20-H motor protection relay
  • GE IS200TDBTH6ACD gas turbine control system module
  • GE WESDAC D20 C Combination Module
  • GE IC698CMX016 Control Memory Switch Module
  • GE SRPE60A 40 rated plug
  • GE 94-164136-001 motherboard control board
  • ABB PCD237A101 3BHE028915R0101 excitation control module
  • ABB XZC826A102 3BHE036348R0102 control module
  • ABB SAFT183VMC Safety Monitoring and Control Module
  • ABB LD 810HSE EX 3BSE091722R1 fieldbus link equipment
  • ABB RED615 HCDCACADAAHC2BNN11E Line Differential Protection and Control
  • ABB UFC760BE41 3BHE004573R0141 Industrial Computer Board
  • ABB 1TGE120011R2200 Motor Feed Control Unit
  • ABB PM865 3BSE030193R1 Compact Programmable Controller
  • ABB MVR 0.44-10KA high-power motor control module
  • ABB AO810 Input/Output Module
  • ABB SPAU341C1-AA RS488003-AA numerical protection repeater
  • ABB DSTA131 2668180-48/2 Programmable Logic Controller
  • ABB COM00012RAA005844A0004J2RAA005696N Control Panel Module
  • ABB MR7557891MRS050640C power relay
  • ABB 2RCA025057A0001R safety relay
  • ABB 2RCA013892A0003H power relay
  • ABB 2RCA013655A0001H power relay accessories
  • ABB 07KT94-98 controller
  • ABB 1MRK002247 Apr04 Transformer Module
  • ABB UNS0884a-v1 3BHE004385R0001 current sensor
  • ABB WMDOLT2-A75 (65KA) 6E 1TGE106812P0001 Input and Output Board
  • ABB Uras26 F-No. 3.346368.0 A-No 0240462201/2030 Gas Chamber Detector
  • ABB UFC911B101 3BHE037864R0101 control board
  • ABB TU841 3BSE020848R1 Termination unit for 1+1 TB840
  • ABB REF541KM115AAA relay feeder protection
  • ABB NINT-71C main circuit interface board
  • ABB LS14250 lithium battery
  • ABB ICSF08D1 FPR3323101R1012 24VDC high-speed counter
  • ABB DO814 Input/Output System
  • ABB 769111B gas chamber detector
  • ABB CM10/00MU1E0/STD Process Controller
  • ABB 769154 A filter element
  • ABB 769137 C 13CO2-10% 0746919 E detector
  • ABB 0769143 A Sample cell (Al), 175 mm
  • ABB 0002-07-2-000001-01 BMXS Scientific Module (ADC)
  • ABB CM15/000S0E0/STD Universal Process Indicator
  • ABB BSD0750 servo drive
  • ABB CI854BK01 Communication Interface Module
  • ABB XVC772A102 3BHE0322285R0102 circuit board
  • ABB AI04 Input/Output System
  • ABB TU847 module terminal unit
  • ABB TB807 module bus terminator
  • ABB PP877K control panel
  • ABB AO845A eA Analog Output Module
  • ABB SD822 power supply equipment
  • ABB 3BHB006716R0277 SYN5302A-Z.V277 synchronizer
  • ABB GFD233A103 3BH02294R0103 Controller
  • ABB 129740-002 134177-001 Intelligent I/O Module
  • ABB XUD194 3BHE018137R0001 AC800PEC High Performance Controller
  • ABB T3N225 Circuit Breaker
  • ABB A30-30-10RT three pole AC contactor
  • ABB SYN5302A-Z, V217 3BHB006716R0217 digital synchronizer
  • ABB NBIO-31 3BSE011337R1 I/O and Expansion Control Module
  • ABB 5SHX1960L0006 3BHB016120R0002 3BHE019719R0101 GVC736BE101 High Voltage Inverter Module
  • ABB PPC905AE101 3BHE014070R0101 control module
  • ABB REF615E_E HBFHAEAGNBA1BNN1XE digital feeder protection relay
  • ABB XVC770BE101 3BHE02103R0101 circuit board module
  • ABB 3BHL000986P7001 redundant DC power supply unit