Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Solar photovoltaic system

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 361 次浏览: | Share:

System setting

In order to understand the design of solar photovoltaic system, we must first figure out the principle of solar photovoltaic power generation, its principle is relatively simple - based on the photovoltaic effect of semiconductors, the use of solar cells to directly convert solar energy into direct current energy.

First of all, I will introduce the characteristics of photovoltaic power generation, mainly in the following aspects:

1, mainly composed of electronic components, does not involve mechanical rotating parts, running without noise;

2, no combustion process, power generation process does not need fuel;

3, no waste gas pollution in the power generation process, no waste water discharge;

4, equipment installation and maintenance are very simple, simple maintenance, low maintenance costs, reliable and stable operation, long service life of 25 years;

5, strong adaptability to environmental conditions, can work normally in different environments;

6, able to work normally and stably under long-term unattended conditions;

7, it is easy to expand and expand the scale of power generation according to needs.

Secondly, the photovoltaic power generation system can be divided into the following modes according to the application and type:

1, provide power for no power occasions;

2, small solar electronic products;

3, large-scale photovoltaic power generation system;

4, combined with the building photovoltaic power generation system (BIPV, BAPV).

Photovoltaic system design information collection, mainly including meteorological data collection, location information, related building information collection three aspects.

Meteorological data collection also includes solar radiation, temperature, humidity, wind speed and other aspects.

Solar radiation is divided into solar short-wave radiation (direct radiation SL, scattered radiation Ed, total radiation Eg, short-wave reflected radiation Er), Earth long-wave radiation (atmospheric long-wave radiation EL↓, ground long-wave radiation EL↑).

The conversion formula between them is as follows: Eg↓=SL+Ed↓; SL=S*sinHA=S*cosZ; E*=Eg↓+EL↓‐Er↑‐EL↑.

The temperature has three values: daily average temperature, daily maximum temperature and daily minimum temperature. The temperature has a great impact on the open circuit voltage, output current, output power, and other electrical properties of the photovoltaic module, which is a very important factor in the subsequent design, and also has a great impact on the use environment of the relevant electrical equipment.

Humidity is only a parameter of the daily average relative humidity, but it also has a certain impact, and humidity has an impact on the service life of the photovoltaic bracket and the use of related electrical equipment such as inverters in the photovoltaic system.

Wind speed is divided into three values: daily average wind speed, daily maximum wind speed, and daily maximum wind speed, which have certain destructive effects on photovoltaic equipment, and the greater the wind speed, the stronger the destructive force. This also puts forward higher requirements for the wind safety of the support of the installed photovoltaic modules, as well as the building safety of the installed photovoltaic curtain walls, roofs and other structural parts.

Setting principle

Factors to consider in the design of solar photovoltaic systems:

1, where is the solar photovoltaic system used? What is the solar radiation situation in the area?

2. What is the load power of the system?

3. What is the output voltage of the system, DC or AC?

4. How many hours does the system need to work per day?

5. In case of rainy weather without sunlight, how many days does the system need continuous power supply?

6, the load situation, pure resistive, capacitive or inductive, how much starting current?

7, the number of system requirements.

System characteristics

advantage

1, solar energy is inexhaustible, and the solar radiation received by the earth's surface can meet the global energy demand 10,000 times. As long as four percent of the world's deserts are installed with solar photovoltaic systems, the electricity generated can meet the needs of the world. Solar power is safe and reliable, and will not suffer from energy crises or fuel market instability;

2, solar energy can be anywhere, can be nearby power supply, do not have to long-distance transmission, to avoid the loss of long-distance transmission lines;

3, solar energy does not use fuel, the operating cost is very low;

4, solar power has no moving parts, not easy to use damage, simple maintenance, especially suitable for unattended use;

5, solar power generation will not produce any waste, no pollution, noise and other public hazards, no adverse impact on the environment, is the ideal clean energy;

6, the solar power generation system construction period is short, convenient and flexible, and can be added or reduced arbitrarily according to the load increase or decrease, to avoid waste.

shortcoming

1, the ground application is intermittent and random, the power generation is related to climate conditions, in the evening or rainy days can not or little power generation;

  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor
  • Yaskawa JZNC-XPP02B Teaching Programmer
  • YASKAWA CACR-SR07BE12M servo drive
  • YASKAWA JAMSC-B2732V Advanced Drive Controller
  • YASKAWA JGSM-06 Controller
  • YASKAWA PCCF-H64MS 64MB Industrial Memory Module
  • YASKAWA CACR-02-TE1K servo driver
  • YASKAWA JAPMC-IQ2303 Controller Module
  • YASKAWA DDSCR-R84H Controller
  • YASKAWA JANCD-XTU01B circuit board
  • YASKAWA JANCD-XIO01 High Performance PC Input/Output (I/O) Board
  • YASKAWA JACP-317800 servo drive
  • YASKAWA CP-317/AI-01 Field Control Station Module
  • YASKAWA SGDS-08A01A High Performance Servo Motor
  • YASKAWA PS-01 Industrial Programmable Logic Controller
  • YASKAWA MB-01 Integrated Ethernet PLC Module
  • YASKAWA JZNC-XU01B servo drive and amplifier
  • YASKAWA JZNC-MRK12-1E Control Machine
  • YASKAWA JRMSP-P8101 power supply
  • YASKAWA JRMSI-B1026 Relay
  • YASKAWA JEPMC-MC001 PLC module
  • YASKAWA JEPMC-CP210T2V High Performance PLC Module
  • YASKAWA JANCD-PC51 control board
  • YASKAWA JANCD-MSV01B circuit board
  • YASKAWA JANCD-MCP02B-1 Yaskawa Circuit Board
  • YASKAWA JANCD-MCP01 Multi Communication Interface Module
  • YASKAWA JANCD-JSP04-1 CNC board
  • YASKAWA JANCD-CP50B Industrial Control Module
  • YASKAWA JAMSI-B1031 Industrial Control Module
  • YASKAWA JAMSC-C8160 Industrial Control Module
  • YASKAWA JAMSC-C8120 Industrial Control Module
  • YASKAWA JAMSC-B1071 Control Module
  • YASKAWA JAMSC-B1070 Industrial Control Module
  • YASAWA DI-01 Digital Indicator Controller
  • YASKAWA CPS-18F8 module
  • YASKAWA AI-01 Analog Input Module
  • YASKAWA SGMAH-02AAA21 high-precision servo motor module
  • YASKAWA NPSO-0503L high-precision servo drive module
  • YASKAWA LASC-100SUB high-precision motion control module
  • YASKAWA JUSP-WS15AB servo control unit
  • YASKAWA JANCD-MIF01 Multi Interface Communication Card
  • YASKAWA JAMSC-B1063 Industrial Control Module
  • YASKAWA JAMSC-B1050 Industrial Control Module
  • Alstom BCSR1 TERMINAL BOARD OF 8 LOGIC OUTPUT SIGNALS
  • Alstom BCEA1 TERMINAL BOARD OF 8 ANALOGUE INPUT SIGNALS
  • Alstom BCEL2 TERMINAL BOARD FOR 12 LOGIC INPUT SIGNALS
  • Alstom E64L1- LOGIC INFORMATION ACQUISITION BOARD
  • Alstom FRTN2 BOARD OF DIGITAL INDICATION OF VOLTAGE REGULATION
  • Alstom ARTN1 DIGITAL INDICATION BOARD FOR VOLTAGE REGULATION
  • Alstom MCRI1 MODULE BOARD FOR SETTING SETTINGS AND CURRENT REGULATION
  • Alstom CPRM1 SINGLE-PHASE POWER REGULATION BOARD
  • Alstom ESVI1 INPUT/OUTPUT BOARD FOR CURRENT AND VOLTAGE SIGNALS
  • Alstom RDSP1 BOARD FOR ADJUSTING DIGITAL SIGNAL PROCESSES
  • Alstom MDEX1 microprocessor control board
  • Alstom IRVI20 - REGULATION INTERFACE BOARD
  • Alstom AMS42 POWER SUPPLY BOARD
  • ABB VACUUM CONTACTOR VSC7 SCO IEC 60470 400A 3POLE 220-250V 50/60Hz
  • ABB DRIVEMONITOR VERSION 4000 DRIVE MODULE RBOX316-ABB-00
  • YASKAWA JACP-317802 AC servo drive
  • YASKAWA JACP-317801 Advanced Process Controller
  • YASKAWA JACP-317120 Power Supply Unit
  • YASKAWA CP-9200SH/SVA servo controller
  • YASKAWA CP-9200SH/CPU Programmable Controller
  • YASKAWA CP-317/DO-01 Digital Output Module
  • YASKAWA CP-317/218IF high-speed communication interface module
  • YASKAWA CP-317/217 IF Communication Interface Module
  • YASKAWA CIMR-M5D2018 High Performance Inverter
  • YASKAWA CACR-HR10BB servo drive
  • YASKAWA 218IF machine controller
  • YOKOGAWA YS1700-100/A06/A31 Programmable Indicator Controller
  • YOKOGAWA KS9-5 * A signal cable
  • YOKOGAWA KS8-5 * A signal cable
  • YOKOGAWA KS2-5 * A DSC signal cable
  • YOKOGAWA PW482-10 power module
  • YOKOGAWA SCP451-11 processor module
  • YOKOGAWA SR1030B62-3MN * 1C High Frequency Signal Processor
  • YOKOGAWA SR1030B62 Analog Input Module
  • YOKOGAWA CP451-10 processor module
  • YOKOGAWA CP451-50 processor module
  • YOKOGAWA AAI143-H50 Analog Input Module
  • YOKOGAWA 22.5 × 17.4 × 10 Compact Industrial Control Module
  • YOKOGAWA AMM42 multiplexer input module
  • YOKOGAWA SDV144-S63 Digital Input Module
  • YOKOGAWA AIP830-111 single player keyboard
  • YOKOGAWA S9361DH-00 Terminal Board Module
  • YOKOGAWA ATK4A-00 S1 KS Cable Interface Adapter
  • YOKOGAWA PW701 power module
  • YOKOGAWA AVR10D-A22010 Duplex V-net Router
  • YOKOGAWA PW441-10 power module
  • YOKOGAWA VI451-10 Communication Interface Module
  • YOKOGAWA VC401-10 Coupling Module
  • YOKOGAWA ALP121 Communication Module
  • YOKOGAWA NFAI841-S00 Analog Input Module
  • YOKOGAWA AIP591 Process Control Module
  • YOKOGAWA AIP578 optical link transceiver
  • YOKOGAWA PW501 power module
  • YOKOGAWA YNT511D fiber optic bus repeater
  • YOKOGAWA AIP171 transceiver control module
  • YOKOGAWA VI702 Vnet/IP Interface Card
  • YOKOGAWA 2302-32-VLE-2 electronic mixer
  • YOKOGAWA ATK4A-00 Cable Interface Adapter
  • YOKOGAWA ALR121-S00 Communication Module
  • YOKOGAWA CP461-50 processor module
  • YOKOGAWA AIP121-S00 Control Module
  • YOKOGAWA UR1800 Recorder
  • YOKOGAWA LC82 * A Industrial Controller
  • YOKOGAWA ANR10D bus node unit
  • YOKOGAWA SDV144-S13 Digital Input Module
  • YOKOGAWA NFAI143-H00 Analog Input Module
  • YOKOGAWA EB501 Bus Interface Module
  • YOKOGAWA CP451-10 Process Control Module
  • YOKOGAWA V0/E1/TCAM/L08 Advanced Process Control Module
  • YOKOGAWA VO/E2/TCDM24/L8 high-precision temperature control module
  • YOKOGAWA 16137-119 high-precision digital input module
  • YOKOGAWA 16114-500 module rack