First, reasonable selection of cement varieties and strength grades
According to the construction site and engineering technical requirements, reasonable selection of cement types and strength grades to avoid improper selection of cement, resulting in project quality substandard or cost increase.
Second, pay attention to transportation and storage management
In the process of transportation and storage, avoid moisture and debris incorporation of cement, resulting in a decline in cement quality and performance. At the same time, be careful not to mix with organic substances such as sugar and fertilizer to avoid adverse reactions; The storage height of bagged cement should not exceed 20 bags, the palletizing is too high, and the lower cement is prone to buckling due to excessive pressure.
Third, can not be mixed
There are differences in the quality and performance of different varieties and strength grades of cement, which should be stacked separately and used separately, including cement of the same variety but from different manufacturers.
Fourth, strictly control the quality of mixed materials
Try to choose the sand with less mud content, the water used should not contain organic matter (sugar, fertilizer, washing supplies, etc.), in summer or winter preparation of concrete, pay attention to control the temperature of sand and water, to avoid the concrete setting time too fast or too slow.
Four, Cement construction ratio specification
For general civil buildings, the concrete-lime sand ratio is 1: 3, important parts such as beams, plates, columns, and foundation projects should be configured in accordance with the requirements of construction design specifications, mixing should be uniform during construction, the water-cement ratio should not be too large, vibration should be moderate, not over vibration, leakage vibration, not leakage slurry, continuous pouring, to avoid the uneven distribution of concrete cement, segregation, bleeding and other phenomena, so that the strength is reduced.
1 High Belite cement
The enthalpy of formation of C3S mineral in cement clinker is 1 810kJ/kg, while the enthalpy of formation of C2S mineral is only 1 350kJ/kg[2]. Therefore, increasing the content of C2S in clinker and reducing the content of C3S is an effective way to reduce the energy consumption of clinker calcination. Therefore, the low-calcium high-belite cement with C2S as the dominant mineral has become one of the most active research hotspots in the international cement industry.
The research of low heat Portland Cement system (C2S-C3S-C3A-C4AF, i.e., High Belite Cement) with Belite as the dominant mineral originated in the United States in the 1930s. It was during the construction of the 99m high Morris Dam in 1932-1935 that the first low-heat cement was developed, that is, limiting the content of C3A and C3S in the cement clinker to reduce the heat of hydration, which was the prototype of High Belite cement. Studies have also been conducted in Germany, Japan and Sweden. By the 1990s, China had achieved remarkable results in the research and practical application of high belite cement, and realized the industrial production of high performance and low heat Portland cement with C2S as the leading mineral for the first time at home and abroad.
The main difference in mineral composition between High Belite cement and general purpose Portland cement is the basic exchange of the content of two silicate minerals, C3S and C2S. High Belite cement is mainly composed of C2S with relatively low CaO content (C2S content is generally more than 45%), thus reducing the CaO content of the whole system. Its mineral composition is: C2S: 40% ~ 70%, C3S: 10% ~ 40%, C3A: 2% ~ 8%, C4AF: 10% ~ 25%[3]. Its mineral types are the same as general Portland cement, so its hydration process and hydration products are basically the same.
The raw materials used in High Belite cement are basically the same as those of traditional Portland cement, and admixtures such as gypsum, barite, pyrite, copper tailings and lead and zinc tailings need to be added to stabilize the highly active C2S crystal form [3]. High Belite cement has the characteristics of low resource and energy consumption, low environmental load and so on. If the firing temperature is only 1 350℃, about 100℃ lower than the traditional Portland cement, the emission of CO2 and SO2 during the firing process is reduced by 10%, and the cement performance has the characteristics of low heat and high late strength, which well meets the technical requirements of mass concrete, especially hydraulic concrete. It has also been applied in the world-renowned Three Gorges Dam and other key projects. But compared with traditional cement, high belite cement has the disadvantage of low early strength. To this end, cement researchers have made a lot of efforts to improve the early hydration activity of the high Belite system through various technical ways such as physical activation and chemical activation [4-8].
2 Aether Cement
Aether cement was developed and invented by Lafarge Company, and has declared the invention patent. Lafarge Cement established the Aether project team in 2010 and conducted research on Aether low carbon cement for three years (from September 1, 2010 to August 31, 2013). The Aether project team has completed two industrial tests of Aether cement production, confirming the feasibility of producing Aether cement on an industrial scale by relying on the existing cement kilns.
email:1583694102@qq.com
wang@kongjiangauto.com