Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Development status of hydrogen metallurgy

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 221 次浏览: | Share:

introduction

The concept of hydrogen metallurgy was first proposed in the 20th century, replacing carbon reduced iron ore with hydrogen will completely reduce the emissions of pollutants and carbon dioxide from the source, and is the most important way to achieve zero carbon emissions. At present, the main technical routes of hydrogen metallurgy are hydrogen rich smelting in blast furnace and gas base direct reduction shaft furnace ironmaking.

The "Hydrogen" sub-project of ULCOS (Ultra-low Carbon Dioxide steelmaking, 2004-2010) in Europe is the earliest known comprehensive research project on hydrogen-based steelmaking. The project investigated two methods of reducing iron ore by hydrogen:

The first is the reduction of fine mineral powder in a multistage fluidized bed, with hydrogen instead of natural gas, which is the only direct reduction process that uses pure hydrogen as a reducing agent, using hydrogen produced by natural gas steam reforming. The process was used commercially, but was eventually retired for economic reasons.

The second is to directly reduce iron ore pellets or lumps in a vertical shaft furnace.

01 Hydrogen rich blast furnace ironmaking technology

In terms of research on hydrogen-rich blast furnace ironmaking, China Baomu has signed the "Nuclear Energy - hydrogen production - metallurgy coupling technology Strategic Cooperation Framework Agreement" with China Nuclear Group and Tsinghua University on January 15, 2019. The idea is to use nuclear energy to produce hydrogen to achieve hydrogen metallurgy, and the goal is to basically solve the problem of coal restriction in ironmaking and reduce carbon dioxide emissions by 30%. The formation of Baowu unique low-carbon iron making technology.

In foreign countries, the technical routes of COURSE50 Iron making Process in Japan, Hydrogen Reduction Iron making Process in Posco in South Korea, and hydrogen based Iron making Project in ThyssenKrupp in Germany are all using partial hydrogen instead of coke in blast furnaces to achieve partial hydrogen reduction and significantly reduce carbon dioxide emissions.

The COURSE50 project in Japan was launched in 2008 and consists of two parts of research. The first is the blast furnace carbon dioxide reduction technology of hydrogen direct reduction iron ore, mainly including hydrogen reduction iron ore technology, coke oven gas modification technology to increase hydrogen content, and high strength and high reactive coke production technology, the goal is to achieve 10% carbon dioxide reduction. The second is the separation and recovery technology of carbon dioxide in blast furnace gas, including the separation and capture technology of carbon dioxide in blast furnace gas, the use of steel waste heat energy to separate and capture carbon dioxide, the goal is to reduce carbon dioxide by 20%. Japan's New Energy Industry Technology Development Organization (NEDO) has commissioned five companies - Nippon Steel, JFE, Kobe Steel, Nisshin Steel (merged into Nippon Steel), and Nippon Steel Engineering - to conduct the test, and is expected to reach the goal of practical use by 2030 and spread to all blast furnaces in Japan by 2050.

In addition, Germany's ThyssenKrupp plans to invest 10 billion euros by 2050 to develop hydrogen-based ironmaking technology that will inject hydrogen into blast furnaces in large quantities. In November 2019, ThyssenKrupp officially injected hydrogen into blast furnace No. 9 of the Duisburg plant for hydrogen-based ironmaking tests. Hydrogen is injected into blast furnace No. 9 through one of the tuyere, which marks the beginning of a series of tests for the project. Thyssenkrupp plans to gradually extend the use of hydrogen to all 28 tuyere of Blast Furnace No. 9. In addition, the company also plans to use hydrogen for steel smelting in all three other blast furnaces at the plant from 2022, reducing carbon dioxide emissions in production by up to 20 percent.

In August 2020, Degen and Saarsteel carried out the operation of highly hydrogen-rich coke oven gas. The company believes that the use of hydrogen as a reducing agent in future blast furnaces is technically feasible, but the prerequisite is that green hydrogen should be possessed. The longer term technical route is that if the green hydrogen can meet the demand in quantity, then on the premise of competitive cost, the future steel production in Saarland will take the hydrogen based direct reduced iron - electric arc furnace technology route. The company plans to next test using pure hydrogen in two blast furnaces.

02 Gas based direct reduction technology

The development of gas-based direct reduction technology is also remarkable. Hesteel Group and Tenion signed a contract on November 23, 2020, for the construction of high-tech hydrogen energy development and utilization projects, including an annual output of 600,000 tons of ENERGIRON direct reduction plant, which will be the world's first industrial direct reduction iron production plant using hydrogen-rich gas.

Shanxi Zhongjin Technology Group announced the ignition test of its hydrogen based direct reduced iron project on December 20, 2020, marking the official start of the industrial application stage of the hydrogen based Direct Reduced iron Project (CSDRI) process, as shown in Figure 2. CSDRI process breaks through the key technology of coke oven gas upgrading, including gas conversion and purification technology, especially low pressure deep desulfurization purification technology.

In June 2020, the GFG Alliance signed a series of agreements with the Romanian government and relevant entities, including the adoption of modern steel production technologies to significantly reduce CO2 emissions. Their plans include building a direct reduced iron plant with an annual capacity of 2.5 million tons. The plant initially used natural gas as a reducing agent, and then with the successful development of hydrogen reduction technology, hydrogen will be used as a reducing agent, and the steelmaking process will shift from converter to electric arc furnace, reducing carbon dioxide emissions per ton of steel by 80%, once the direct reduction iron plant uses hydrogen, its carbon emissions will be almost zero.

In addition to the above studies on hydrogen rich blast furnace and gas-based reduction shaft furnace, Jianlong Group Inner Mongolia Saispu has strengthened the comprehensive utilization of coke oven gas by using a new process of hydrogen based melting reduction, and put into operation a hydrogen based melting reduction project with an annual output of 300,000 tons.

03 Challenges of hydrogen metallurgy

At present, the cooperation between hydrogen energy and the steel industry is a win-win result: hydrogen energy helps steel enterprises to save energy and reduce emissions, extend business, and complete transformation, and steel enterprises provide more landing applications for hydrogen energy and promote its development. The hydrogen and steel industries are a mutually reinforcing industrial mix. However, the concept of hydrogen metallurgy is still in its infancy both in theory and practice, and it is still facing many difficulties. The biggest challenge is still the problem of low-cost hydrogen production, at present, most iron and steel enterprises to use coke oven gas as the goal of hydrogen source smelting projects, related research and development work is on the rise, hydrogen production process and hydrogen metallurgy technology calls for breakthroughs in key technologies, the future of hydrogen metallurgy still need to be explored. At the same time, hydrogen energy policies at the national level are still mainly concentrated in the field of transportation, and the development of hydrogen metallurgy technology also needs a high-altitude top-level design and policy support.


  • Alstom vajh13yf1001aba - Automatic Trip Relay 220-250 V
  • ALSTOM Servo Inverter Type:ALSPA MV 1007-IT - - 3.0 kW
  • ALSTOM Cegelec Interface Modnet 1 / MB+ Fbk Mbp S1/S - Interface Module
  • Alstom Input / Output Card I/O Module SA44647.A - Module
  • Alstom Plug-in card Input/Output module SA44650.C - Module
  • ALSTOM Adjustment Module Keypad Alspa MV1000 - Keypad
  • Alstom Operating module Keypad Alspa MV1000 - Keypad
  • Alstom Plug-In Input/Output Module Sa 45629.B - Module
  • ALSTOM Adjustment Module Keyboard Alspa MV1000 - Keyboard
  • ALSTOM Control Set - 15 V 029.069642/26472/1011 - Voltage regulator
  • Alstom Input/Output Card Module SA44650.C - Module
  • Alstom Input / Output Card I/O Module - Module
  • Alsthom Alstom Plug-In Input/Output Module SA41630 B - Module
  • ALSTOM Servo Inverter Type: ALSPA MV 1007-IT - - 3.0 kW
  • Alstom Plug-In Input/Output I/O Module SA44647.A - Module
  • Alstom Plug-In Input/Output Module Sa 45629.B - Module
  • Alstom Plug-in card Input/Output module SA46623.B - Module
  • ALSTOM Control Module Keyboard Alspa MV1000 - Keyboard
  • Alstom Plug-In Input/Output Module SA46623.B - Module
  • Alstom Plug-In Input/Output Module SA44650.C - Module
  • Alstom Plug-In Input/Output Module SA43610.E - Module
  • Alstom Insertion Card Input / Output Module SA43610.E - Module
  • Alsthom Alstom Plug-In Input/Output Module SA41630 B - Module
  • Alstom Plug-In Input/Output I/O Module - Module
  • Alstom Plug-In Input/Output Module SA46623.B - Module
  • Alstom Plug-in card Input/Output I/O module SA44647.A - Module
  • Alstom Plug-in card Input/Output I/O module SA44647.A - Module
  • Alstom Plug-in card Input/Output module SA 45629.B - Module
  • ALSTOM Alspa VF Inverter Type : VF 4004b - - 1.5 Kw
  • Alstom Plug-In Input/Output Module SA46617.B - Module
  • Alstom PS 431 - Control Unit
  • Alstom Plug-In Input/Output Module Sa 46624.A - Module
  • Alstom Plug-In Input/Output Module SA44650.C - Module
  • Alstom Plug-In Input/Output Module SA43610.E - Module
  • ALSTOM Alspa MV1000 Frequency Type : Alspa MV1032 - - 15 Kw
  • Alstom Input/Output Card Module SA46617.B - Module
  • Alstom Input/Output Card Module Sa 45629.B - Module
  • Alstom Input/Output Card Module SA46623.B - Module
  • ALSTOM Servo-Converter Type : ALSPA MV 1007-IT - - 3.0 Kw
  • ALSTOM Frequency Type : ALSPA MD2000 - 43-400 (49-460)
  • ALSTOM Servo-Converter Type : ALSPA MV 1007 - - 3.0kW
  • Alstom PS 431 - Control
  • ALSTOM Alspa Cegelec Guide Value Transmitter 029.087.176/98N115099109 - Transmitter
  • Alstom Input/Output Card Module Sa 46624.A - Module
  • ALSTOM Control Set - 15 V 029.069642/26472/1011 - Voltage regulator
  • ALSTOM Alspa Module Control Set 029.111.890/27347/1018 - Module
  • ALSTOM Alspa Module Control Set 029.063.255/25443/1044 - Module
  • ALSTOM Alspa Cegelec Module Control Set 029.063.292/25943/1008 - Module
  • ALSTOM Microverter D 4-8/500/029.130.005 - Inverter
  • Alstom ISTAT M233 M233X2GUYECAL0A - Measurement unit M233X2GUYECAL0A NEW
  • ALSTOM Alspa Cegelec Guide Value Transmitter 029.087.176/98N115099109 - Transmitter
  • Alstom Input/Output Module SA 46624.A - Plug-in card
  • ALSTOM Cegelec Interface Modnet 1 / MB + Fbk - Mbp S1/S
  • ALSTOM MAE 00-11 - 8 Channel isolated analog i/o termination panel LC11-13 24118b
  • Alstom MMLG01 137945N - Test block electric panel 715209M T&D protection and control
  • ALSTOM Mae 00-11 - Channel Isolated Analog I/O Terminal Panel LC11-13 24118b Al
  • CONVERTEAM S20X4262/50 / S20X426250 - Module
  • CONVERTEAM MV530A4C1A / MV530A4C1A - Inverter
  • CONVERTEAM C100/5302 / C1005302 - Module
  • CONVERTEAM 20X4355B1L / 20X4355B1L - (new without box)
  • CONVERTEAM GM0020002 / GM0020002 - Module
  • CONVERTEAM P111-6052 / P1116052 - Module
  • Alstom PS 431 - Controller
  • ALSTOM Type : Alspa BC 32 - Brake Chopper Unit
  • ALSTOM Alspa MV500 SE23400075/MV502A4C1A - - 0.75kW Inverter
  • Alstom M30-Tx200 DIN931 - Hexagon screw stamped 8A B screw GE Alstom SW 46
  • Alstom Sa 46624.A - Plug-In Input/Output Module
  • ALSTOM Adjustment Module Keyboard Alspa MV1000 - Keyboard
  • Alstom PA20397/2186-03-H01 - Circuit Board
  • Alstom KBCH12001H12MEL 228633J - Relay Differential KBCH120
  • Alstom MMLG01 137945N - TestBlock Electric Panel 715209M T&D Protection & Control
  • Alstom KBCH12001H12MEL 228633J - Differential Relay KBCH120
  • Alstom MMLG01 137945N - Test Block Electrical Panel 715209M T&d Protection &
  • ALSTOM Mae 00-11 - 8 Channel Isolated Analog I/O Terminal Panel LC11-13 24118b
  • Alstom KBCH12001H12MEL 228633J - Differential Relay KBCH120 and extended warranty
  • Alstom MMLG01 137945N - Test Block Electrical Panel 715209M T & D Protection & De
  • Alstom DFI-110-0340F - DFI1100340F Diagnostic Flame Indicator
  • KCGG142 KCGG14201D20EEA - 287362J
  • ALSTOM MAE 00-11 - Channel isolated analog i/o termination panel LC11-13 24118b Al
  • KCGG122 KCGG12201DEED - 463055L and extended warranty
  • Alstom MMLG01 137945N - Test Block Electrical Panel T&D Protection & Control
  • Alstom 3FAFA5100A - Voltage Sensor TN7 112 003 Alstom T&D Protection & Control
  • Used ALSTOM PIB100 F 3BEB0169 - Board
  • Alstom Keypad - Alspa MV 1000
  • Alstom MMLG01 137945N - Test Block Electrical Panel 715209M T & D Protection &
  • ALSTOM PS441 - Overcurrent protection - Used
  • Alstom Power 2506305 - Circuit Board
  • ALSTOM PS431 - CONTROL UNIT
  • ALSTOM MV502S2B1A - 1 pc X Frequency Drive Alspa MV500
  • Alstom 3VAFS5500A - Voltage Sensor TN7105 002 Alstom T&D Protection & Control
  • ALSTOM MV507A2D1A - 1 pc X Frequency Drive Alspa MV500
  • KCGG KCGG12201L20EED - 655002M and extended warranty
  • ALSTOM TRVP059753000 - AGC3X-007 BLOCK ENCODER TRVP05975400
  • KCGG KCGG14202l20EEB - 654833M and extended warranty
  • Alstom 029 204 538 - cegelec Interface RS422/RS232 Alspa MV 1000
  • ALSTOM PIB100 F - 3BEB0169 Board
  • CONVERTEAM 8321-4002 / 83214002 - (new with box)
  • CONVERTEAM MVAJ14D1GA0774A / MVAJ14D1GA0774A - Relay
  • CONVERTEAM 8178-4002 / 81784002 - (new with box)
  • CONVERTEAM QTWIE2-VD4A / QTWIE2VD4A - (new with box)
  • CONVERTEAM A48DI-40DX-B7/95 / A48DI40DXB795 - Meter
  • CONVERTEAM V96LC/0-400RPM / V96LC0400RPM - Meter
  • CONVERTEAM A72DI-5-40X4/95 / A72DI540X495 - Meter
  • CONVERTEAM 8321-4002 / 83214002 - Module
  • CONVERTEAM 029.081-942 / 029081942 - Module
  • CONVERTEAM V96LC/0-600RPM / V96LC0600RPM - Meter
  • CONVERTEAM 20X4524B1L / 20X4524B1L - Module
  • CONVERTEAM EGS3C-ST11001 / EGS3CST11001 - Module
  • CONVERTEAM S8503-4001 / S85034001 - Module
  • CONVERTEAM MVAX12B1DA0752A / MVAX12B1DA0752A - Relay
  • CONVERTEAM 11P408ND8268/7 / 11P408ND82687 - (new without box)
  • CONVERTEAM MVAJ26L1BB0502A / MVAJ26L1BB0502A - Relay
  • CONVERTEAM C100/5120 / C1005120 - Module
  • CONVERTEAM D-984-0578 / D9840578 - Board
  • CONVERTEAM GDS1017-4001 / GDS10174001 - Enhancement Card
  • CONVERTEAM MBC101F1AD0761A / MBC101F1AD0761A - Module
  • CONVERTEAM GDS1006-4001 / GDS10064001 - Keypad
  • CONVERTEAM 25X8521/10 / 25X852110 - Module
  • CONVERTEAM VSELC1011A1AB / VSELC1011A1AB - (new without box)
  • CONVERTEAM RTS-13060102-R / RTS13060102R - Relay
  • CONVERTEAM LGPG-11101P55LEF / LGPG11101P55LEF - Relay
  • CONVERTEAM 203-399 / 203399 - Module
  • CONVERTEAM MV516A4C1 / MV516A4C1 - Inverter
  • CONVERTEAM SW867577-007 / SW867577007 - Module
  • CONVERTEAM MCGG22D1CD0503D / MCGG22D1CD0503D - Relay
  • CONVERTEAM MV506A4C1A / MV506A4C1A - Inverter
  • CONVERTEAM GM0025002 / GM0025002 - Module
  • CONVERTEAM MBCI01F1AD0511A / MBCI01F1AD0511A - Module