Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Present situation and development countermeasure of low carbon technology of metallurgical lime

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 712 次浏览: | Share:

Carbon emissions from lime production

Sources of carbon emissions from lime production

Calcination of ore raw material produces carbon emission. The lime production process is mainly the calcination process of limestone in lime kiln, and the main composition of limestone is calcium carbonate (CaCO3). Under calcination conditions ranging from 900 degrees Celsius to 1100 degrees Celsius, calcium carbonate decomposes to calcium oxide (CaO) and carbon dioxide (CO2).

Fuel combustion and electricity consumption produce carbon emissions. Lime production fuels are usually coal, coke and other solid fuels, heavy oil and other liquid fuels, as well as coke oven gas, converter gas, blast furnace gas, calcium carbide furnace gas, natural gas and other gas fuels, fuel combustion reaction generated carbon dioxide into the atmosphere with the flue gas. In addition, lime production also indirectly contributes to carbon emissions by consuming electricity.

Carbon emissions from metallurgical lime production

According to the "China Iron and Steel Production Enterprises Greenhouse Gas Emissions Accounting Methods and Reporting Guidelines (Trial)" (hereinafter referred to as the "Guidelines"), metallurgical lime production process carbon emissions by industrial production process carbon emissions, fuel combustion carbon emissions, electricity consumption carbon emissions from three aspects.

According to the "Guidelines", the calculation of carbon emissions from industrial production processes, fuel combustion, and electricity in metallurgical lime production is as follows:

Carbon emission in industrial production process = raw material consumption × emission factor

Carbon emission from fuel combustion = average low calorific value of fuel × fuel consumption × carbon content per unit calorific value of fuel × carbon oxidation rate ×44/12

Carbon emissions generated by electricity = power consumption × power emission factor

According to metallurgical lime production experience data: Ore ratio of 1.8 tons/ton, anthracite consumption of 160 kg/ton (under single fuel condition), converter gas consumption of 550 cubic meters/ton (under single fuel condition), power consumption of 50 KWH/ton, and power emission factors are temporarily calculated based on the average emission factors of the base lines of China's regional power grids in 2017 emission reduction projects. The carbon emissions per ton of product in the industrial production process are 0.792 tons, the carbon emissions per ton of product in the fuel combustion process are 0.308 tons (using anthracite as fuel) ~0.832 tons (using converter gas as fuel), and the carbon emissions per ton of product generated by electricity are 0.046 tons.

According to the above analysis, when anthracite is used as fuel, the production of each ton of lime products produces about 1.1 tons of carbon dioxide; When using converter gas as fuel, the production of each ton of lime product produces about 1.7 tons of carbon dioxide. According to statistics, the output of metallurgical lime in 2018 was about 110 million tons, that is, the production of carbon dioxide was about 121 million tons to 187 million tons, and the equivalent ton of steel produced carbon dioxide was about 0.13 tons to 0.20 tons.

At present, China's long process steel enterprises have carbon emissions of about 2.0 tons per ton of steel, short process steel enterprises have carbon emissions of about 0.6 tons per ton of steel, and short process crude steel production accounts for about 11% of total crude steel production. According to this calculation, the amount of carbon dioxide emitted by metallurgical lime production reaches about 7% to 11% of the total carbon emissions of the steel industry.

The above calculation is based on the rough estimate of anthracite coal and converter gas as two representative fuels in the process of metallurgical lime production, for reference only.

Review of low carbon technology of metallurgical lime

Through the unremitting efforts of industry research workers and practitioners, the low-carbon technology of metallurgical lime has made great progress in recent years. By strengthening combustion, improving furnace insulation performance and life, recycling waste heat resources, separation and purification of carbon dioxide in waste gas, they gradually promote the metallurgical lime industry to achieve energy-saving and low-carbon development. Low carbon technologies in metallurgical lime industry are summarized as follows:

Oxygen-enriched combustion technology

Oxygen-enriched combustion technology is a high-efficiency and energy-saving combustion technology that burns oxygen-containing gas with higher oxygen content than air. By increasing the oxygen content in the combustion air, the air requirement is reduced, the flue gas production is reduced, and the heat loss taken away by the flue gas is reduced. In addition, the oxygen-rich combustion technology can also increase the theoretical heating temperature and theoretical combustion temperature, so that the fuel is completely burned, reduce flue gas pollution, can improve the theoretical combustion speed, so that the combustion reaction is faster and more complete. The research shows that the application of oxygen-enriched combustion technology to lime kiln has great technical advantages, and has achieved remarkable effect of energy saving and consumption reduction.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module