Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Development status and future prospect of floating nuclear power plant

来源: | 作者:佚名 | 发布时间 :2024-01-03 | 249 次浏览: | Share:

At the technical level, floating nuclear power plants are vulnerable to Marine environmental conditions, and it is difficult to meet the space requirements of relevant equipment and facilities, and it is easy to produce "common cause failures". Floating nuclear power plants operate in the Marine environment for a long time, and are susceptible to the impact of salt spray, mold and Marine organisms, resulting in corrosion of system pipes and equipment, adhesion of Marine organisms and other destructive problems, which will lead to the decrease or damage of pipeline heat transfer performance, affecting its normal operation. At the same time, the Marine environment is easy to cause periodic changes in the spatial position of the floating nuclear power plant system, and introduce additional inertial force fields brought by periodic changes. These factors can directly affect the hydraulic and heat transfer characteristics of the medium, and then affect the physical characteristics of the reactor, and eventually cause damage to the system of the nuclear power plant. In addition, compared with traditional nuclear power plants, the internal space of floating nuclear power plants is relatively small, so its internal equipment has strict restrictions in terms of volume and weight, and its safety facilities cannot achieve the requirements of multiplicity, diversity and independence, which is prone to "Common Cause Failure". That is, several devices fail at the same time due to a specific single fault.

At the regulatory level, relevant policies, laws and standards are not yet comprehensive, and the international offshore nuclear energy regulatory system needs to be further improved. In the process of development of floating nuclear power plant, it involves design and construction, safety and emergency, operation and supervision and many other links, so it is necessary to establish a relatively complete system of policies, laws and standards to better supervise its development. However, at present, the relevant international policy standards are not perfect, and China has not established the corresponding policy standard system. At present, the overall guidance and relevant requirements for the international research and development of floating Nuclear power plants mainly include the Treaty on the Non-Proliferation of Nuclear Weapons (Treaty on the Non-Proliferation of Nuclear Weapons). NPT, the United Nations Convention on the Law of the Sea, Comprehensive documents such as UNCLOS and the International Convention for the Safety of Life at Sea (SOLAS), but these documents are limited in their coverage and do not provide specific guidance for the development of floating nuclear power plants. In addition, although the United States, the United Kingdom and Russia and other countries in recent years have issued their own floating nuclear power plant research and construction guidance documents and policy standards, but still not enough to support the overall requirements of the development of floating nuclear power plants, its development is still faced with imperfect policy standards, regulatory system is not sound and other problems, it is urgent to establish a more complete offshore nuclear energy regulatory system.

Third, the future prospects of floating nuclear power plants

Although the development of floating nuclear power plants still faces many difficulties, with the continuous progress of relevant technologies and the deepening of the global trend of decarbonization, the development speed of floating nuclear power plants will be further accelerated. At the same time, the traditional nuclear power countries represented by the United States and Russia will continue to increase investment in the field of floating nuclear power plants, in order to meet their own power needs at the same time, seize the development of floating nuclear power plants. Overall, the future development of floating nuclear power plants will show the following two trends.

First, barge nuclear power plant technology will become more mature, and will gradually become the mainstream development direction of floating nuclear power plants. Compared with other types of floating nuclear power plants, barge type nuclear power plants have the longest history of development, and the barge form it uses can play to the advantages of the traditional shipbuilding industry, help floating nuclear power plant technology to achieve rapid development, and further reduce its overall research and construction cost. At present, the United States, France and South Korea and other countries are simultaneously focusing on barge nuclear power plants while developing their own representative floating nuclear power plants. In 2022, the French Bureau Veritas (BV) and the American company ThorCon reached a technical certification agreement to cooperate on the development of a 500MW floating nuclear fission power station integrated in a barge for operation in Indonesia. South Korea's Samsung Heavy Industries (SHI) received a certificate of Approval in principle from the American Bureau of Shipping (ABS) in January for its barge-type nuclear power plant design concept. The company will develop its floating nuclear power plant based on a compact molten salt reactor technology developed by Danish company Seaborg Technologies. In addition to the "Academician Lomonosov", Russia also plans to build a number of barge-type nuclear power plants to further improve the ability to provide electricity to remote areas such as the Far East. It can be seen that countries are vigorously promoting the research and construction process of barge-type nuclear power plants, and the future of this type of nuclear power plants will gradually become the mainstream development direction of floating nuclear power plants.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module