Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Nuclear energy: Past, present and future

来源: | 作者:佚名 | 发布时间 :2024-01-03 | 264 次浏览: | Share:

1. The rise and stagnation of nuclear power

Nuclear energy began with the development of nuclear bombs for the military. Since then, the technology has been used for civilian power generation. Unfortunately, the growth of the anti-nuclear movement has damaged its reputation and growth trajectory.

Here is a brief history of nuclear power in the United States and the anti-nuclear movement that plagued its existence.

The first appearance of violence and its transition to civilian applications

The world's first application of nuclear fission was the two atomic bombs dropped on Japan during World War II. Needless to say, the word "nuclear" has some less than satisfactory associations. However, the "atoms for Peace" agenda of the 1950s meant that the powerful properties of fission would soon be put to civilian use. In 1958, the first commercial power plant went online in Pennsylvania, along with optimism that "energy is too cheap to measure" and even direct-to-consumer products like nuclear-powered cars!

The birth of anti-nuclear attitudes

In the mid-1950s, the U.S. military conducted hydrogen bomb tests in the South Pacific, spreading dangerous levels of radiation onto inhabited islands. The test also directly affected a Japanese fishing boat, whose crew suffered radiation poisoning while returning to Japan. Needless to say, it was a public relations disaster for the nuclear weapons test, and the Pentagon's botched cover-up further eroded trust.

Nuclear weapons were also a defining feature of the Cold War, with the Soviet Union and the United States building stockpiles of weapons of mass destruction that could destroy the world many times over. At the height of the Cold War in the early 1960s, anti-nuclear protests proliferated in response to concerns about nuclear testing and proliferation.

Environmentalists are anti-nuclear

At the same time, a grassroots environmental movement began to take shape in the 1960s. Rachel Carson's best-selling books "Silent Spring" and "The Population Bomb" have brought attention to pesticides and overpopulation. In the early 1970s, Earth Day, Greenpeace, and the United Nations Environment Program were founded.

More and more environmentalists are turning against nuclear power. Many point to opposition to the proposed Bodega Bay nuclear power plant as the birthplace of the anti-nuclear environmental movement. Local community groups and environmental groups have protested the plant with classic "not in my backyard" opposition, arguing that it destroys flora and fauna, local identity and the livelihoods of fishermen.

While the Sierra Club initially supported nuclear power, some vocal members switched sides, fearing that this powerful and abundant energy source could lead to runaway growth. David Brower, executive director of the Sierra Club, is deeply concerned about overpopulation and immigration: "More power plants create more industry, which in turn leads to greater population density... The scenic character of the state will be destroyed."

Eventually, the Sierra Club changed its stance, and to this day, it and other major environmental organizations maintain an anti-nuclear stance. For decades, they have worked to shut down nuclear plants, put a moratorium on new ones, and generally contributed to an unwarranted fear of nuclear power.

A "catastrophic" misunderstanding

The Three Mile Island disaster in 1979, Chernobyl in 1986 and Fukushima in 2011 dealt several major blows to the reputation of nuclear energy. The overreaction and media coverage of these events has led to a huge misunderstanding of these events and how damaging they actually are.

For example, the accident at Three Mile Island in 1979 killed a total of 0 people. The radiation released by the accident was negligible - by some estimates, the local dose was equivalent to what you'd get in a chest X-ray, and far less than the background radiation levels typically experienced in a year.

However, the dramatic evacuation response, the permanent shutdown of the reactors, and the lack of clarification or attempts to accurately report what actually happened meant that many Americans remained convinced that Three Mile Island was a real "disaster."

The Chernobyl accident of 1986 and the Fukushima accident of 2011 have also been misunderstood, especially in the case of Fukushima, which was greatly exaggerated. Chernobyl did not operate according to today's safety standards. The plant does not have a containment vessel that can prevent the release of radioactive material. Even more shocking was the cause of the accident: the operation team was conducting an "experiment" that involved turning off automatic safety mechanisms and simulating an emergency. They did it without training or planning. The initial steam explosion killed three people and 28 firefighters died of acute radiation syndrome (ARS). In the 25 years since the accident, 15 people have died of thyroid cancer.

The Fukushima Daiichi nuclear power plant suffered meltdowns in tsunami-induced flooding, but only 0-1 people died from the accident, with more damage and loss of life caused by an excessive evacuation response to the accident. The earthquake that triggered the tsunami that led to the meltdown of the Fukushima nuclear reactors was the largest ever recorded, killing more than 15,000 people and causing massive damage to Japan's built environment, including many industrial areas.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module