Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

General technology for hydrogen production from biomass

来源: | 作者:佚名 | 发布时间 :2024-01-04 | 289 次浏览: | Share:

(1) Gasification and reforming

Biomass is considered to be one of the most abundant and renewable hydrogen production resources. Biomass gasification is a good process for hydrogen production. The dried raw material is pyrolyzed, then the intermediate product is burned, and then the subsequent compound is gasification. This process is carried out in a reactor called a gasifier, which operates at a higher temperature (700 to 1400 ° C) in the presence of a medium such as air, O2, vapor (H2O), or CO2. Unlike combustion, ideal pyrolysis and gasification processes convert the chemical energy of organic materials into a mixture of gases, organic liquid molecules, and solid coke. These methods are considered advantageous for future hydrogen or syngas production from biomass, which can meet environmental emission requirements and achieve cost effectiveness. Gasification of biomass in water vapor, air or oxygen media can produce gas mixtures of different hydrogen concentrations. Among them, water vapor gasification produces a higher hydrogen concentration than air gasification or oxygen gasification, and the resulting gas has a better calorific value. In a high thermal environment, biomass will undergo partial oxidation, steam reforming reaction or both reactions, resulting in syngas and solid coke. The resulting solid coke can be further reacted to hydrogen, carbon oxide and methane. The whole reaction process of biomass gasification is as follows:

In the first step of the gasification reaction, the thermal degradation of biomass produces crude syngas containing lighter volatiles. Further reaction and gasification efficiency depends on the gasification medium and process parameters. The product of biomass gasification is mainly a gas component, so this method is more suitable for producing hydrogen than pyrolysis. Effective biomass gasification relies on the development of low-cost feedstock, improved method efficiency, reduced installation and operating costs, and reduced environmental impact.

Tar formation during biomass gasification is a major concern as it poses operational problems and reduces the quality of the gas produced. Tar is a viscous liquid composed mainly of high-end aromatic hydrocarbons and heavy metals. High temperature cracking, steam reforming and partial oxidation can reduce tar production and improve the quality of the final product. In order to improve hydrogen production technology, several recent reports have investigated hydrogen conversion using different types of biomass, different experimental devices, and different catalytic pathways. The use of catalysts is very important, which can improve productivity and hydrogen production by facilitating the cleavage of C-O and C-C bonds. In addition to catalysts based on the metals nickel (Ni), zinc (Zn), platinum (Pt) and Ruthenium (Ru), different catalysts including alkali metals [mainly potassium (K) and sodium (Na)], zeolite, dolomite [CaMg(CO3)2] and limestone have been successfully used for hydrogen production by electrolysis of water as well as gasification and pyrolysis of biomass. Alkali metal catalysts, such as Na, K and Ca, can increase hydrogen production during biomass gasification.

In addition, alkali metal catalysts and nickel-based catalysts increase the conversion of solid coke and prevent tar formation by promoting reforming reactions during biomass gasification. Alkali metal oxide, dolomite and nickel based catalysts have good effect on gasification because of their ability to promote reforming reaction. For example, the use of dolomite catalysts in biomass gasification can reduce tar production, while zeolite can effectively improve solid coke gasification. Nickel-based catalysts are considered to be the best catalysts for reforming reactions in industrial applications of biomass gasification. More efficient green catalysts need to be designed in the future to increase hydrogen production while minimizing the production of solid coke and tar residues.

(2) Microorganism Law

Thermal-chemical method in biomass hydrogen production not only has high design cost, but also requires high temperature and pressure. Compared with thermal-chemical method, microbial method has many advantages in biomass conversion to produce hydrogen. The main advantages are that the microbial method does not produce greenhouse gases and can use biomass waste as feedstock. Therefore, as a prospective biomass hydrogen production technology, microbial method has great potential.

Biomass microbial conversion to hydrogen production can be accomplished through photosynthesis and fermentation. Fermentation can be divided into dark fermentation and light fermentation, while photosynthesis includes direct and indirect photolysis. In fermentation hydrogen production, a variety of bacterial enzyme systems can convert organic substrates into biohydrogen. Under anaerobic conditions, hydrogenases degrade organic matter and transfer electrons to protons to produce hydrogen, a process known as dark fermentation. Conversely, light is required for the photofermentation process, similar to the production of hydrogen through photosynthesis. Similar to dark fermentation, which usually produces hydrogen from carbohydrate-rich biomass at 30-80 ° C, light fermentation can produce hydrogen from aqueous environments at room temperature and atmospheric pressure.

  • ABB BC25 Controller Module
  • ABB 3HAB8859-1/03A Industrial Control Module
  • ABB 3HAB9271-1/01B Robotic Control Interface Module
  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive