Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Biomass liquid fuel cell

来源: | 作者:佚名 | 发布时间 :2024-01-04 | 291 次浏览: | Share:

(A) Based on polyoxometalate catalyst

Catalysts play a key role in the process of low temperature biomass electrolysis conversion. The catalyst to be selected should have strong oxidation properties, which can oxidize various organic substrates and crack C-C bonds at low temperatures. POM is a kind of polyatomic structure formed by three or more transition metal oxygen ions connected by shared oxygen atoms. Due to its special structure, POM shows good physical and chemical properties. POM plays a good catalytic role in the hydrolysis and oxidation of organic matter and is considered as a promising catalyst for liquid fuel cells.

Recent work on POM-catalyzed biomass liquid fuel cells has been reported. Various types of POM (including Keggin-type and non-Keggin-type) are used for biomass oxidation and oxygen reduction reactions. Liu et al. studied a fuel cell using combustible agricultural waste (wheat straw and wine residue) as fuel and H3PMo12O40 as catalyst, and the corresponding power density of the fuel cell reached 111 mW· cm-2. Zhao and Zhu oxidized lignolsulfonates at 95~100 ℃ using H3PW12O40, H4PVW11O40, H4P-Mo11VO40, K5PV2Mo10O40 and H3PMo12O40, and reported high lignin conversion and power generation efficiency. In addition, The output power depends on the POM catalyst used, and the typical power density output ranges from 0.3 to 45 mW· cm-2.

The open circuit voltage is the key factor affecting the performance of LFFC. Obviously, a larger potential difference between the POM of the anode and cathode can improve the output performance of the fuel cell. For anodes, POM with strong oxidation capacity is preferred, but the electrode potential in the reduced state should be as low as possible. For the cathode, the POM should have a high electrode potential to ensure a large loop voltage between it and the anode, but should also be easily oxidized by oxygen for full regeneration.

Lewis acids (such as Sn4+, Fe3+, VO2+, and Cu2+) can be added to the reaction system as copromoters of POM. Liu et al. added Fe3+ and Cu2+ to cellulose-based fuel cells as POM facilitators, and found that the power density increased from 0.45 mW cm-2 to 0.72 mW cm-2. Metal ions that act as Lewis acids have been reported to help break the glycosidic bonds in cellulose, and are more effective than Bronster acids. Xu et al. studied the co-catalysis of FeCl3 and POM. The addition of Fe3+ significantly improves overall performance, as Fe3+ accelerates hydrolysis of the biomass and enhances electron transport.

(ii) Based on other REDOX ion pairs

In addition to POM, other REDOX ion pairs have also been reported for DBFC. Gong et al. reported on the biomass liquid fuel cells with Fe3+/Fe2+ REDOX pair for anode and VO2+ /VO2+ REDOX pair for cathode. The biomass is oxidized by Fe3+ on the anode side. The reduced Fe2+ releases electrons at the anode to become Fe3+ again. The researchers studied the oxidation of Fe3+/ Fe2+ ion pairs and biomass. FeCl3 acts as an oxidizing agent and catalyst for the oxidation of biomass and is reduced to Fe2+. Using glucose as a model compound for biomass, the reaction in the anodic solution can be written as:

Fe2+ then releases electrons to the anode.

The result is that Fe3+ is regenerated.

Electrons pass through an external circuit and are captured by VO2+ at the cathode, forming VO2+. The maximum current density of the battery reaches 100 mA· cm-2, and the energy conversion efficiency is as high as 76.5%.

Li and Song demonstrate a straw-based fuel cell that uses methyl violet as an electron carrier, nickel foam as an anode, and Pt/C as a cathode. When ZnCl2 solvent with a mass fraction of 65% is used, the fuel cell shows excellent performance. In addition, the addition of methyl violet in the battery system greatly improves the discharge performance, with a maximum power output of 0.3 mW· cm-2. Hibino et al. have developed a direct fuel cell based on cellulose. The battery uses SN0.9IN0.1P2O7-polytetrafluoroethylene (PTFE) composite electrolyte and Pt/C as the cathode and anode. The cellulose was pretreated with 85% H3PO4 and placed in the anode of the battery. The battery reaches a maximum power density of 32.7 mW· cm-2 at 250°C. In this electrochemical process, H2O acts as the main reactant and the end product of cellulose is CO2. Ding et al. reported another process using H3[PMo12O40] and FeCl3 as electron carriers and proton carriers to achieve integration of wheat grass pretreatment products into ethanol production and biomass conversion to electricity.

(3) Model-based biomass compounds

The properties of LFFC are closely related to the chemical structure of the biomass used. As shown in Table 1, a wide variety of biomass feedstocks are used as LFFC fuels. The study found that the use of polymerized biomass substances, such as cellulose, starch and hemicellulose, can produce a higher power density than the use of small molecules alcohols and acids. This is because most natural biomass polymers contain polyhydroxyl compounds, and hydroxyl groups play an important role in the photoredox reaction of POM and alcohols. In order to understand the effect of hydroxyl group on photoredox activity, Wu et al. studied the LFFC performance of a series of model biomass compounds with hydroxyl group number ranging from 1 to 6 as fuel, and found that the output power of the battery was strongly affected by the hydroxyl group content in the molecular structure of the biomass.

  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module