Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Hydrogen production from biomass by low temperature electrolysis

来源: | 作者:佚名 | 发布时间 :2024-01-04 | 227 次浏览: | Share:

(1) Lignocellulose and lignin as sources of hydrogen production

Lignin accounts for 15% to 30% of the mass of lignocellulosic biomass, and is the second most abundant biomass component in nature after cellulose. Unlike carbohydrates, lignin is a chemically cross-linked phenolic polymer. Due to its rigid structure, lignin is difficult to utilize in most biorefining processes, for example, in the paper industry, where lignin is often considered waste. The full utilization of lignin not only contributes to the development of renewable energy, but also can solve the environmental problems related to lignin waste. Value-added lignin through depolymerization of lignin into high value-added chemicals or fuels has aroused great interest in the biorefining industry. Lignin is one of the ideal sources of sustainable hydrogen production because of its high hydrogen content. However, the current technology of lignin hydrogen production faces great challenges, including chemical degradation of lignin and microbial fermentation.

Recently, a new PEM electrolysis method using biomass as a sacrificial agent has been reported. In this electrolysis process, hydrogen can be produced with lower electrical energy consumption because the biomass provides a part of the energy used for water decomposition. The traditional precious metal catalyst at the anode has been replaced by POM aqueous solution to achieve biomass degradation and oxidation. It is reported that the minimum energy consumed is only about 16.7% of the energy consumption of hydropower. These exciting results provide us with a method for electrochemical degradation of lignocellulosic biomass and simultaneous hydrogen production (Figure 6). In addition to using POM as an electron carrier, Fe3+ can also be used as a biomass degradation catalyst and charge carrier in biomass fuel cells and electrolysis. The standard electrode potential of the Fe3+/Fe2+ ion pair is 0.77 V [relative to the standard hydrogen electrode (NHE)]. The mechanism reportedly involves the oxidation and degradation of phenolic structural units of lignin by Fe3+. At the same time, during PEM electrolysis or fuel cell discharge, the reduced Fe2+ can be regenerated into Fe3+.

Charge carriers (such as POM or Fe3+/Fe2+ ion pairs) play a very important role in the degradation of lignin and the transfer of electrons from the biomass to the anode. In controlled experiments, the key role of charge carriers in this process was verified by using phosphoric acid (H3PO4) as an electrolyte to replace PMo12 or Fe3+ on the anode side. The results show that no significant electrolytic current is detected in controlled experiments even when a high voltage of 1.2V is applied. These results indicate that lignin is difficult to anodize directly in the absence of Fe3+/Fe2+ or POM catalysts. Therefore, lignocellulosic biomass alone cannot be directly used as a feedstock to produce hydrogen in PEM electrolyzers; instead, degradation of lignin should be mediated by charge carrier catalysts.

The study of biomass electrolysis catalyzed by FeCl3 shows that the current density of electrolysis can reach 0.34~0.37 A· cm-2 when the electrolytic voltage of 1.2V is applied. When three different types of lignin (pulping lignin (KL), alkaline lignin (AL) and lignin sulfonate (SL)) were used as electrolytic raw materials for the anode, the I-V curves of the electrolytic process were almost the same, which indicated that the source of lignin had little effect on the electrolytic performance. In fact, the important factor controlling electrolytic performance is the concentration of Fe2+, which is formed when the biomass is oxidized by Fe3+. This is actually Fe2+ being electrooxidized at the anode, rather than lignin. Similarly, in PMO12-mediated systems, the degree of reduction of PMo12 is a key factor in determining electrolytic performance, as the PMo12 anion can transfer electrons from the lignin to the electrode.

The oxidation of lignin is the key problem of hydrogen production by low temperature electrolysis. The catalyst PMo12 or Fe2+ can be anodized to achieve cycling under the action of electric field to gradually depolymerize and oxidize the lignin. The results showed that after three oxidation cycles (reaction temperature 100 ℃, total reaction time 18 h), dissolved by PMo12 and FeCl3, the content of lignin in electrolyte solution was 17.8% and 22.4%, respectively. The degradation of lignin can be improved by increasing the number of oxidation cycles and reaction temperature. It has been reported that 14.0% of solid lignin can be degraded into small molecules after reaction at 100 ℃ for 18 h. However, if oxidized at 190 ℃ for 1 h, the degraded lignin content will increase to 26.6%. The CO2 production at the anode side was verified by gas emission analysis, indicating that lignin oxidized.

This may also be caused by the breaking of methoxy (-O-CH3), C-O bonds, or even C-C bonds in the biomass during oxidation. The total organic carbon (TOC) analysis of the aqueous phase after lignin oxidation showed that the electrolyte solution contained 0.77~0.90 g· L-1 organic matter, indicating that lignin had been dissolved in the electrolyte. Lignin oxidizes to produce organic compounds in the water phase, which can be analyzed by gas chromatography mass spectrometry (GC-MS). The researchers found vanillin, phenol, 1, 2-dimethoxybenzene, guaiacol, 3, 4-dimethoxybenzaldehyde and a number of complex compounds in the electrolyte solution of the PMo12 reaction.

  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module
  • Kollmorgen S64001 - Servo Drive
  • Kollmorgen CR03200-000000 - Servo Drive
  • Kollmorgen 6SM57M-3000+G - Servo Motor
  • Kollmorgen BDS4 - Servo Drive
  • Kollmorgen AKD-P00306-NBEC-000 - Servo Drive
  • Kollmorgen AKD-B01206-NBAN-0000 - Servo Drive
  • Kollmorgen STP-57D301 - Stepper Motor
  • Kollmorgen 6SM37L-4.000 - Servo Motor
  • Kollmorgen 44-10193-001 - Circuit Board
  • Kollmorgen PRDR9SP24SHA-12 - Board
  • Kollmorgen PRD-AMPE25EA-00 - Servo Drive
  • Kollmorgen DBL3N00130-0R2-000-S40 - Servo Motor
  • Kollmorgen S406BA-SE - Servo Drive
  • Kollmorgen AKD-P00607-NBEI-0000 - Servo Drive
  • Kollmorgen AKD-P01207-NBEC-0000 - Servo Drive
  • Kollmorgen CR03550 - Servo Drive
  • Kollmorgen VSA24-0012/1804J-20-042E - Servo Drive
  • Kollmorgen N2-AKM23D-B2C-10L-5B-4-MF1-FT1E-C0 - Actuator
  • Kollmorgen 04S-M60/12-PB - Servo Drive
  • Kollmorgen H33NLHP-LNW-NS50 - Stepper Motor
  • Kollmorgen A-78771 - Interlock Board
  • Kollmorgen AKM43E-SSSSS-06 - Servo Motor
  • Kollmorgen AKD-P00607-NBEC-0000 - Servo Drive
  • Kollmorgen E21NCHT-LNN-NS-00 - Stepper Motor
  • Kollmorgen cr10704 - Servo Drive
  • Kollmorgen d101a-93-1215-001 - Motor
  • Kollmorgen BDS4A-203J-0001-EB202B21P - Servo Drive
  • Kollmorgen MCSS23-6432-002 - Connector
  • Kollmorgen AKD-P01207-NACC-D065 - Servo Drive
  • Kollmorgen CK-S200-IP-AC-TB - I/O Adapter and Connector
  • Kollmorgen CR10260 - Servo Drive
  • Kollmorgen EC3-AKM42G-C2R-70-04A-200-MP2-FC2-C0 - Actuator
  • Kollmorgen BDS5A-206-01010-205B2-030 - Servo Drive
  • Kollmorgen s2350-vts - Servo Drive
  • Kollmorgen AKM24D-ANC2DB-00 - Servo Motor
  • Kollmorgen E31NCHT-LNN-NS-01 - Stepper Motor
  • Kollmorgen PRD-0051AMPF-Y0 - Servo Board