Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Research progress on hazards and treatment technology of mine wastewater

来源: | 作者:佚名 | 发布时间 :2024-01-08 | 782 次浏览: | Share:

Acid-base neutralization is the most commonly used traditional method to treat acid mine wastewater. It has the advantages of simple process, convenient operation and low operating cost, but it also has some disadvantages such as serious scaling, large amount of sediment and easy to cause secondary pollution. In the treatment of acid mine wastewater, in order to improve the treatment effect, the neutralization method is often combined with oxidation method and other methods.

2.2 Coagulation sedimentation method

Coagulation sedimentation method is to destroy the stability of colloids by adding coagulant to wastewater, so that fine suspended particles and colloidal particles aggregate into larger particles and settle, so as to achieve the purpose of wastewater purification. Commonly used coagulants are alum, aluminum chloride, polyaluminum chloride (PAC), polyferric sulfate (PFs), polyferric chloride (PFC), polyacrylamide (PAM) and so on.

As a basic water purification method, coagulation sedimentation method is widely used in the treatment of various sewage. Its main mechanism is that the colloid is destabilized and condensed into floc by adsorption bridge, sediment net trapping and compression double electric layer. In view of different mine wastewater, coagulation sedimentation method, adsorption method and chemical oxidation method are often composed of different treatment processes. Yan Qun et al. adopted the coagulation sedimentation and activated carbon adsorption process to treat the beneficiation wastewater of a lead-zinc mine in Panxi area of Sichuan Province, which not only reduced the concentration of heavy metal ions in the wastewater, but also solved the problem of high CODcr in the wastewater. The beneficiation index of the treated wastewater can be equivalent to that of fresh water after reuse. Sun Shuiyu et al. studied the purification treatment and reuse of wastewater from a lead-zinc sulfide ore flotation plant in Jiangsu province, and the results showed that: with coagulation sedimentation and chemical oxidation process, all the indicators of effluent can meet the national discharge standard, but the treatment cost is high; The treatment cost is low, the content of suspended solids and heavy metals in the effluent is up to the standard, the chemical oxygen demand and foaming property are reduced to a certain extent, and the reuse effect of the treated wastewater is comparable to that of domestic tap water.

2.3 Chemical oxidation method

Chemical oxidation is one of the effective methods to completely remove pollutants from wastewater. Through chemical oxidation, the liquid or gaseous inorganic matter and organic matter can be converted into a slightly toxic, non-toxic substance, or it can be converted into a form that is easy to separate, to achieve the purpose of reducing COD, BOD and toxicity of wastewater. Chemical oxidants commonly used in wastewater treatment include ozone, sodium hypochlorite, hydrogen peroxide, Fenton reagent and so on.

Chemical oxidation method can oxidize refractory organic matter to small molecular organic matter and improve the biodegradability of wastewater. Zhao Yonghong et al. conducted an experimental study on xanthate removal from water by bleaching powder oxidation method. When the addition amount of bleaching powder was 15 mg/L, the pH value was 3, and the oxidation time was 3 h, xanthate solution with a concentration of 10 mg/L could be completely degraded. The experimental results show that xanthate and No. 2 oil in mineral processing wastewater can be effectively decomposed by ozone. When the oxidation time is 5 min, the removal rate of xanthate and No. 2 oil reaches more than 99%.

2.4 Constructed wetland method

Since Kickuth proposed the "root zone theory" in 1972, constructed wetland technology has entered the field of water pollution control as a unique new sewage treatment technology. In 1974, the first constructed wetland system for sewage treatment was built in Othfrensen, West Germany, and since then, constructed wetland technology has gained rapid development because of its superior performance. In recent years, constructed wetland technology, as an alternative to traditional sewage treatment technology, has been widely used in the treatment of domestic sewage, industrial wastewater and agricultural wastewater.

Constructed wetland is a natural biological sewage treatment system, which is a practical technology combining sewage treatment and utilization. Its core is a composite ecosystem of matrix, microorganism and plant. The physical, chemical and biological synergies of this composite system are utilized. The wastewater can be purified by filtration, adsorption, precipitation, dissolution, complexation, ion exchange, plant absorption and microbial decomposition. Suspended matter and organic pollutants in mine wastewater can be removed through the filtration of matrix, the interception of wetland plants, the adsorption of plant root biofilm, the feeding of wetland organisms and the degradation of microorganisms, etc., while heavy metal ions in mine wastewater can be removed through the adsorption of fillers and chemical reactions. Although the matrix generally cannot chemically react with the heavy metals in the wastewater to form precipitation, it can transform the heavy metals into a low toxic state through complexation.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card