Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Study on ecological restoration status and treatment countermeasures of abandoned mines left over from history

来源: | 作者:佚名 | 发布时间 :2024-01-11 | 855 次浏览: | Share:

2.5 Repair Techniques

Mining has caused serious damage to topography and landform, and there are subsidence areas, tailings ponds and waste discharge fields covering a large area, etc. As of 2018, a total of 1.2×l04 ground collapse disasters have occurred in abandoned mines in China, and the solid waste stock is 4.96×1010t, with high construction technical requirements. Compared with water pollution and air pollution, mine restoration has less attention, less research on related technologies, and the existing technologies are relatively simple, mainly in geological environment management, secondary disaster prevention and control, vegetation restoration and land reclamation. In the "National Soil Pollution Survey Announcement" published in 2014, 1,672 soil points in 70 mining areas accounted for 33.4% of the exceeded points, and the main pollutants were cadmium, arsenic, lead and polycyclic aromatic hydrocarbons. The soil pollution control technology was weak, the plant survival rate was low, and no integrated control system was formed. In recent years, some new technologies have achieved good results, but the cost is high and the application is limited. In 2013, the Technical Code for the Protection and Restoration of the Ecological Environment in Mines (Trial) issued the development of industry standards, which did not enforce and play its due role in guiding technical requirements for the protection and restoration of the ecological environment, including waste dumps, open-pit stopes, tailings ponds, special roads for mining areas, mining industrial sites, subsidence areas, gangue yards, polluted sites, etc. The regulations on pollution prevention and control involving air, water and soil are relatively simple, and there are no more detailed technical guidelines and norms for one aspect, and no new technical norms have been issued since then.

In accordance with the differences in the types and mining methods of mines under different natural conditions, the state formulates standardized and serialized restoration standards and treatment technical norms to improve operability, enforce implementation, raise the level of mine treatment, and reduce the number of mines that do not meet the treatment standards. Strengthen the basic theoretical research of mine ecological restoration, improve the level of scientific and technological support, and reduce the application cost. At present, ecological restoration technology is mainly based on physical restoration, chemical restoration, biological restoration and joint restoration. Single restoration technology often cannot meet the needs of mine ecological restoration, and joint restoration technology will be more and more applied to mine restoration. Under the premise of ensuring the treatment of geological environment and the elimination of heavy metals and other major pollution, the mine restoration can improve the survival rate of vegetation, achieve the reconstruction of biodiversity and the restoration of regional ecological functions.

Step 3: Advice

3.1 Coordination mechanism of mine comprehensive treatment work

There are many fields and departments involved in the mine restoration and treatment project, and the corresponding work has been carried out with the focus on the restoration project and certain progress has been made, but there are still problems such as the overlapping responsibilities of various departments and the inconsistency of rights and functions. Therefore, the local government should set up a comprehensive mine management office, identify the member units, formulate working rules such as cooperation, consultation and information sharing, and transmit responsibility pressure at various levels to ensure that the mine restoration and management work is carried out effectively and orderly.

3.2 Improving laws and regulations

There are relatively few laws and regulations related to mine ecological restoration. The Mineral Resources Law is mainly aimed at exploration and mining, and does not deal with mine rehabilitation and pollution control. Although the Regulations on the Protection of Mine Geological Environment put forward relevant requirements for the restoration and protection of mine environment, many regulations have not been fully implemented. The relevant laws on mineral resources need to be further improved, the link of mine restoration and treatment should be set up, the original "protection provisions" should be upgraded to the level of regulations or legal provisions, and the environmental legal provisions should be coordinated to form a collaborative legal support system.

3.3 Detailed inspection and assessment of abandoned mine conditions

In the ongoing national verification of historical mines, the national database and inventory list of historical mines established only include the mine name, location, mineral species, map spot number, central point coordinates, area and other elements, with little information. On the basis of the catalog list, detailed investigation and environmental risk assessment of mining methods, land ownership, environmental problems, impact scope, ecological restoration budget and other projects should be carried out, and a series of software such as mine status distribution map and management progress map should be made to help managers timely grasp the mine overview and restoration progress, and carry out overall planning and management.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module