Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What is the strategic position of artificial hydrogen production and hydrogen industry in China?

来源: | 作者:佚名 | 发布时间 :2024-01-16 | 877 次浏览: | Share:

00 Introduction

The world is experiencing the third major transition period of the energy system from fossil energy to non-fossil energy such as hydrogen energy [1]. In 2017, China's energy production was 25×108 t of oil equivalent, and the consumption reached 31×108 t of oil equivalent, and the entire energy needs to import 20%, especially the oil import volume was 4×108 t, and its external dependence reached 70%, which had an adverse impact on energy security. In order to provide reference for China to realize the transformation of energy system and the strategic goal of "energy independence", the development status and development trend of hydrogen industry at home and abroad are reviewed, the development ways of artificial hydrogen production and hydrogen storage technology are discussed, and the strategic position of hydrogen industry is defined.

Hydrogen is widely distributed in nature, and only a very small amount of free hydrogen exists in the natural state. Industrial hydrogen refers to the product of combustible gaseous hydrogen produced on a large scale from industrial raw materials by certain means. This process of extracting industrial hydrogen from hydrogen-containing raw materials through energy input is called artificial hydrogen production, including hydrogen production from fossil fuels, hydrogen production from water decomposition, hydrogen production from biotechnology and solar energy [2]. Hydrogen energy as the chemical energy of hydrogen is the energy released in the process of physical and chemical changes, and is an important type of energy with secondary energy properties. This large-scale artificial hydrogen production and utilization of hydrogen energy industry is called the hydrogen industry, including upstream hydrogen production, midstream storage and transportation, and downstream applications. The hydrogen industry chain is based on the technical and economic correlation among various industrial departments in the hydrogen industry system, including the hydrogen industry value chain, the hydrogen industry enterprise chain, the hydrogen industry supply and demand chain and the hydrogen industry space chain.

In order to better read and understand the content of this paper, the author suggests to first define and clarify the above five basic concepts (industrial hydrogen, artificial hydrogen production, hydrogen energy, hydrogen industry, hydrogen industry chain), and thus establish the concept system of hydrogen industry. Hydrogen storage is one of the key technologies to realize the effective utilization of hydrogen energy, including high pressure gas hydrogen storage, low temperature liquid hydrogen storage, metal hydride hydrogen storage, organic compound hydrogen storage, microsphere hydrogen storage and carbon nanomaterials hydrogen storage. Based on large-scale low-cost hydrogen production and high-density hydrogen storage, the hydrogen industry application related to fuel cells will promote the development of energy transformation and new energy vehicles, distributed energy supply and other emerging industries, thereby changing the energy structure, and then realize the transformation of the whole industry chain from the energy supply side to the consumption side.

01 Development status of hydrogen industry

With the continuous development and gradual maturity of hydrogen energy application technology, as well as the continuous increase of global pressure to cope with climate change, we actively layout and force to promote the development of hydrogen industry.

1.1 The global hydrogen industry is taking shape

The global hydrogen industry is growing rapidly, with the market size growing from $187.082 billion in 2011 to $251.493 billion in 2017, a growth rate of 34.4% (Figure 1). Among them, the United States is the largest importer of industrial hydrogen, with a total import of $248 million in 2012-2016, while the Netherlands is the largest exporter of industrial hydrogen, with a total export of $342 million in 2012-2016.

Human society has experienced three industrial revolutions (Figure 2), and since the middle of the 20th century, with the fourth Industrial Revolution, the global transition to new energy has begun (Figure 3). Looking at the history of energy development, the three major energy upgrades reflect the "three economies" form. Watt's invention of the steam engine led to the first major conversion of firewood to coal, manifested as a "high carbon economy"; Daimler invented the internal combustion engine and completed the second major conversion from coal to oil and gas, presenting a "low-carbon economy"; The progress of modern science and technology and the requirements of environmental protection promote the third major transformation of traditional fossil energy to non-fossil new energy sources such as hydrogen energy, and the world may gradually enter the non-carbon "hydrogen energy era" [3-4].

1.2 Artificial hydrogen production mainly depends on fossil resources

The global industrial hydrogen market has a strong regional nature and has formed three regional maps: Asia-Pacific, North America and Europe. Fossil resources are currently the main raw materials for hydrogen production, among which coal gasification has great potential for development [5].

  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card