Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The structure, problems and trends of China's electric power energy during energy transition

来源: | 作者:佚名 | 发布时间 :2024-01-25 | 908 次浏览: | Share:

However, even if the leading position of renewable energy development scale determines China's role as a global pioneer in combating climate change, it does not mean that China is in the same position in terms of energy transition. Energy transition, in essence, is a country's internal energy substitution problem. Therefore, the relative amount of renewable energy, that is, the share in the energy system, better reflects the stage of the energy transition. As the share of renewable energy in the energy system increases to different levels, its development characteristics and problems are different.

Internationally, non-water renewable energy (wind power and photovoltaic power generation) accounts for the proportion of total power generation to measure the progress of energy transition, because wind power and photovoltaic power generation is not only the main force of new renewable energy generation in the future, but also the biggest impact on the old power system of renewable energy. As shown in Figure 5, in China, the United States, India, Canada, Japan and other countries, the share of total electricity generation is less than 10%, which belongs to the primary stage of energy transformation.

The structural problems of China's electric power energy are viewed from the energy transition trend

To understand the problems existing in the power supply structure, there needs to be a potential evaluation standard. In other words, what criteria are used to evaluate whether a certain feature is a strength or a problem. It is necessary to think about the power energy structure and even the whole problem of the current power system from the perspective of the trend and logic of energy transformation.

The impact of energy transition on the power sector

This energy transition is driven by the response to climate change, and the ultimate goal is to significantly reduce carbon dioxide emissions from human activities and curb global warming. Energy transformation is the most basic and lasting factor affecting all energy industries, including the power industry, in the next 50 years, and will have a profound impact on the development direction of the power industry, business models and power systems.

Trends in energy transition. By gradually reducing the carbon emissions generated in energy production and consumption, gradually building an energy system based on zero-carbon energy sources. The core task of the transition is to promote the current energy system dominated by fossil energy, to the energy system dominated by renewable energy.

Two pillars of the energy transition. From the practice of various countries, the realization of low-carbon to zero-carbon energy depends on vigorously improving energy efficiency and reducing the total consumption of fossil energy; Second, we will vigorously develop renewable energy. The key to the transformation is the transformation of energy system, of which the transformation of power system is the key.

Impact on the power industry. The requirements of energy transformation are specific to the power industry, and its impact is mainly manifested in two aspects: low-carbon power generation, grid and electricity consumption; The second is the digitization of the entire power system, using digital technology to adapt to the challenges in the process of energy transition and better adapt to the changing needs of users.

Problems existing in the current power structure

Talking about the power structure from the perspective of low-carbon, it is natural to mention that the proportion of thermal power is too high. However, the author believes that this is only a phased feature of China's power industry, because the proportion of thermal power has indeed continued to decline in recent years, and the installed capacity and power generation of non-fossil energy have steadily increased. And the coal-based energy structure, it is impossible to quickly leapfrog to low-carbon electricity.

First of all, the poor flexibility of China's power system is the fundamental problem, which is far from meeting the requirements of energy transformation at this stage.

With the increase of the proportion of wind and electricity with the characteristics of volatility, the power system must be more flexible to cope with this volatility. Based on European experience, there are five common ways to increase the volatility of existing power systems:

The first is to improve the flexibility of other power plants in addition to wind and photovoltaic. Including the flexible transformation of coal-fired generating units, reduce the minimum power of the plant, increase the maximum load gradient increase, shorten the start-up time, etc. Cogeneration power plants can import heat energy into energy storage systems or central heating networks, which can expand the regulation range of their output.

The second is to strengthen the interconnection of regional power grids, give play to the role of adjacent power grids as "indirect energy storage systems", optimize resource utilization, and reduce the overall cost of the system.

The third is to improve the flexibility of the power demand side, mainly by integrating technical means such as energy storage, heat pumps, electric vehicles, and smart meters to improve the adjustability of the load.

  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module