Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The structure, problems and trends of China's electric power energy during energy transition

来源: | 作者:佚名 | 发布时间 :2024-01-25 | 909 次浏览: | Share:

The fourth is to develop renewable energy heating, increase heat storage devices, and increase the flexibility of power plants. Compared with electricity storage, heat storage is technically easier to achieve, and the cost is relatively low.

The fifth is to use energy storage technology on the production side, the power grid side and the user side to improve the flexibility of these links.

At present, in addition to the flexible transformation of coal power units and the high cost of electrochemical energy storage, the remaining four ways are in our country because of various obstacles, either no action or very limited effect, resulting in the flexibility of the current power system is still very poor. Of course, more importantly, over the years, the development of power supplies and grid planning do not match, and thus there is a high proportion of wind power that cannot be connected to the Internet in the initial stage of energy transformation.

Secondly, there is an inherent contradiction between the large scale of thermal power units and the flexibility of power system.

At present, many power policy ideas largely ignore the impact of the energy transition. The most typical is the power industry energy-saving emission reduction and elimination of backward production capacity in the policy has been respected, and has been promoted to other industries on the "pressure on the small" policy. Since then, the standard for shutting down small thermal power units has been continuously improved. At present, it has been required that 200,000 and less kilowatt thermal power units must be closed, and to encourage large units. According to statistics, 600,000-kilowatt and above thermal power units accounted for more than 44% of all units.

However, increasing the size of thermal power units is inherently not conducive to improving the flexibility of the power system. Because with the further increase in the proportion of renewable energy generation units, thermal power units will change from base load power to backup power in the future. In other words, at the peak of solar power generation, a large number of thermal power units must stop or operate at low load to give priority to solar power generation; When the wind power output falls down, the thermal power unit should be topped up immediately. This requires the thermal power unit to have enough flexibility. Obviously, the larger the unit, the less flexibility. In addition, if the 600,000-kilowatt supercritical unit is operated at low load, coal consumption and emissions will be greatly increased, and the purpose of energy conservation and emission reduction can not be fully realized.

Third, the power grid structure with strong transmission network and weak distribution network cannot meet the needs of user-side changes.

Energy transformation for the power system, there will be at least two major directional changes: first, with the emergence of a large number of distributed photovoltaic, small biomass power stations, multi-energy complementary microgrids, etc., on the user side, the electric energy of the power system will be one-way flow from the production end to the consumption end, into a two-way flow (the user also produces electric energy - that is, prosumer); The second is the transformation of power grid from vertically integrated centralized power grid to distributed flat power grid.

Both of these changes require a digital, intelligent and locally balanced local distribution network. Whether it is due to the need for the "integration" of a large number of small distributed power stations, or the need for distributed access of a large number of energy storage equipment, electric enterprises and other distributed access to optimize the operation and control of the distribution network, it is urgent to accelerate the transformation of the distribution network.

The technical level of China's transmission grid is considered to be the world's leading in the industry, but for a long time, China's investment is "heavy transmission light distribution", resulting in weak grid structure and low level of automation; The segmentation of basic data is seriously unable to be shared, and the level of informatization is low, which is far from meeting the challenges brought by the process of power system transformation, nor can it adapt to the requirements of future smart cities and low-carbon development.

Future trends of power structure

The future development trend of the power structure is described from two perspectives, one is a "scenario analysis" of the future power structure according to the requirements of energy transformation, and the other is that the energy transformation leads to changes in the power system from the structural aspect, that is, the power system transformation.

Institutions have different views on how low-carbon the future electricity mix (supply or consumption) should be. In general, renewable energy research institutions tend to be largely optimistic, while the various reports issued by fossil energy groups are largely conservative estimates. Whether optimistic or conservative, they simply reflect "scenario analysis" under given conditions. What matters is how the conditions for this scenario can be achieved.

  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module