Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Opportunities and challenges of deep mining

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 824 次浏览: | Share:

For coal mining, the concept of fluidized mining includes the following five main processes: (1) unmanned mining; ② Automatic beneficiation; (3) fluidization conversion of solid mineral resources; ④ Controlled filling; Power transmission, intelligent power control and power storage. For metal mining, the concept of fluid mining includes the following three steps: (1) unmanned mining; ② Fluid conversion of solid mineral resources; ③ Controlled filling [24].

There are four technologies to realize fluidized mining of deep underground solid mineral resources [24] : (1) Conversion of solid mineral resources into gas, such as underground gasification of coal; ② Conversion of solid mineral resources into fluid fuels, such as underground liquefaction of coal and high-temperature biological and chemical conversion of coal; ③ Conversion of solid mineral resources into mixtures, such as explosive coal dust and coal water slurry; ④ Solid mineral resources are converted into electricity in situ, such as underground in-situ power generation of coal. Fluid mining is indeed a disruptive mining technology innovation, especially for deep mining in the future.

6. Enhanced simulation facilities for deep mining

Over the past 20 years, a large number of laboratory test equipment and numerical simulation software have been developed around the world to simulate the properties of real rock masses under raw rock stress conditions. In Australia, for example, the CSIRO Rock Mechanics Laboratory is equipped to simulate the real rock mass properties of deep mining using the latest bespoke triaxial devices, core displacement laboratory equipment and indoor digital modeling tools. In the United Kingdom, the University of Portsmouth has developed a mesoscale rock deformation machine to determine the failure mechanics of rock mass in seismic environments. The Department of Earth Science and Engineering at Imperial College London has a reservoir-condition core displacement laboratory facility with X-ray imaging capabilities, gas-liquid mass spectrometry, chemical testing equipment and advanced laboratory modeling tools ranging from rock pore simulation to very large scale model simulation. The Department of Earth Sciences at the University of Cambridge has facilities that simulate the microstructure and geochemical characteristics of rock masses using optical, electronic, infrared, nuclear magnetic resonance and X-ray diffraction (XRD) analyses. In the United States, the University of Minnesota has a variety of closed-loop, hydraulically servo loaders for uniaxial, biaxial (plane-strain) and traditional triaxial compression tests, as well as related digital imaging and acoustic emission (AE) tests. In Canada, the Rock Fracture Dynamics Laboratory at the University of Toronto has a variety of advanced equipment, including a multi-axis servo-controlled rock deformation system and a true three-axis system with AE and three-dimensional (3D) speeds.

Among the excellent geotechnical research centers around the world, the DeepEarthEnergy Laboratory of Monash University in Australia has a variety of advanced research equipment, which can carry out intensive research on rock mass characterization and fragmentation (3GDeep; http://www.3gdeep.com). The mesoscale equipment includes customized high pressure and high temperature enhanced triaxial test machines. The large equipment is represented by enhanced core displacement experiments and shear devices, including a high-pressure triaxial testing machine, a high-pressure hydraulic-mechanical test chamber, and a three-dimensional compression and monitoring Hopkinson bar for testing rock mass properties during rock mass failure. Microscale equipment includes X-ray microscopy for 3D contrast imaging, CT scanning, scanning electron microscopy (SEM), and XRD.

These test sets are complemented by basic simulation tools such as finite element method (FEM)/Finite Difference Method (FDM)/particle flow model (PFC). In order to understand the microscopic results of the rock mass environment (including true fracture, leaching, fluid flow characteristics, visible pore areas, and bending of liquids as they flow through the pore structure), the response characteristics of the ore body/very large rock mass, and the time-dependent impact on the surrounding environment, 3GDeep uses a comprehensive 4-stage test and numerical simulation rule (Figure 3) to study the entire mining process from micro to very large scale. The four scale ranges are as follows: (1) Micro scale: 0.03μm~20mm; ② Mesoscale: 20~100mm; ③ Macroscopic scale: 100~1000mm; ④ Ultra-large scale: 1000m. Studying the relationship between these four scales will help to obtain the underlying geological characteristics that are needed to synthesize very large scale models under real field conditions.

The macroscopic triaxial testing machine [FIG. 4 (a)] and the true triaxial testing machine [FIG. 4 (b)] are particularly important for conducting reliable rock mass fracture tests in these devices, that is, simulating more realistic rock mass fracture tests with non-traditional large samples under typical field conditions of high pressure and high temperature. The macroscopic triaxial test machine performs mechanical tests on rock samples with a diameter of 500mm, which is almost two orders of magnitude larger than the rock samples of traditional advanced triaxial equipment. The device can also simulate the flow of multiphase fluids (liquid and gas) through rock samples, using fluid pressures up to 25MPa.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card