Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Opportunities and challenges of deep mining

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 347 次浏览: | Share:

For coal mining, the concept of fluidized mining includes the following five main processes: (1) unmanned mining; ② Automatic beneficiation; (3) fluidization conversion of solid mineral resources; ④ Controlled filling; Power transmission, intelligent power control and power storage. For metal mining, the concept of fluid mining includes the following three steps: (1) unmanned mining; ② Fluid conversion of solid mineral resources; ③ Controlled filling [24].

There are four technologies to realize fluidized mining of deep underground solid mineral resources [24] : (1) Conversion of solid mineral resources into gas, such as underground gasification of coal; ② Conversion of solid mineral resources into fluid fuels, such as underground liquefaction of coal and high-temperature biological and chemical conversion of coal; ③ Conversion of solid mineral resources into mixtures, such as explosive coal dust and coal water slurry; ④ Solid mineral resources are converted into electricity in situ, such as underground in-situ power generation of coal. Fluid mining is indeed a disruptive mining technology innovation, especially for deep mining in the future.

6. Enhanced simulation facilities for deep mining

Over the past 20 years, a large number of laboratory test equipment and numerical simulation software have been developed around the world to simulate the properties of real rock masses under raw rock stress conditions. In Australia, for example, the CSIRO Rock Mechanics Laboratory is equipped to simulate the real rock mass properties of deep mining using the latest bespoke triaxial devices, core displacement laboratory equipment and indoor digital modeling tools. In the United Kingdom, the University of Portsmouth has developed a mesoscale rock deformation machine to determine the failure mechanics of rock mass in seismic environments. The Department of Earth Science and Engineering at Imperial College London has a reservoir-condition core displacement laboratory facility with X-ray imaging capabilities, gas-liquid mass spectrometry, chemical testing equipment and advanced laboratory modeling tools ranging from rock pore simulation to very large scale model simulation. The Department of Earth Sciences at the University of Cambridge has facilities that simulate the microstructure and geochemical characteristics of rock masses using optical, electronic, infrared, nuclear magnetic resonance and X-ray diffraction (XRD) analyses. In the United States, the University of Minnesota has a variety of closed-loop, hydraulically servo loaders for uniaxial, biaxial (plane-strain) and traditional triaxial compression tests, as well as related digital imaging and acoustic emission (AE) tests. In Canada, the Rock Fracture Dynamics Laboratory at the University of Toronto has a variety of advanced equipment, including a multi-axis servo-controlled rock deformation system and a true three-axis system with AE and three-dimensional (3D) speeds.

Among the excellent geotechnical research centers around the world, the DeepEarthEnergy Laboratory of Monash University in Australia has a variety of advanced research equipment, which can carry out intensive research on rock mass characterization and fragmentation (3GDeep; http://www.3gdeep.com). The mesoscale equipment includes customized high pressure and high temperature enhanced triaxial test machines. The large equipment is represented by enhanced core displacement experiments and shear devices, including a high-pressure triaxial testing machine, a high-pressure hydraulic-mechanical test chamber, and a three-dimensional compression and monitoring Hopkinson bar for testing rock mass properties during rock mass failure. Microscale equipment includes X-ray microscopy for 3D contrast imaging, CT scanning, scanning electron microscopy (SEM), and XRD.

These test sets are complemented by basic simulation tools such as finite element method (FEM)/Finite Difference Method (FDM)/particle flow model (PFC). In order to understand the microscopic results of the rock mass environment (including true fracture, leaching, fluid flow characteristics, visible pore areas, and bending of liquids as they flow through the pore structure), the response characteristics of the ore body/very large rock mass, and the time-dependent impact on the surrounding environment, 3GDeep uses a comprehensive 4-stage test and numerical simulation rule (Figure 3) to study the entire mining process from micro to very large scale. The four scale ranges are as follows: (1) Micro scale: 0.03μm~20mm; ② Mesoscale: 20~100mm; ③ Macroscopic scale: 100~1000mm; ④ Ultra-large scale: 1000m. Studying the relationship between these four scales will help to obtain the underlying geological characteristics that are needed to synthesize very large scale models under real field conditions.

The macroscopic triaxial testing machine [FIG. 4 (a)] and the true triaxial testing machine [FIG. 4 (b)] are particularly important for conducting reliable rock mass fracture tests in these devices, that is, simulating more realistic rock mass fracture tests with non-traditional large samples under typical field conditions of high pressure and high temperature. The macroscopic triaxial test machine performs mechanical tests on rock samples with a diameter of 500mm, which is almost two orders of magnitude larger than the rock samples of traditional advanced triaxial equipment. The device can also simulate the flow of multiphase fluids (liquid and gas) through rock samples, using fluid pressures up to 25MPa.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board