Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Opportunities and challenges of deep mining

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 821 次浏览: | Share:

3. Smart mining

As an inevitable product of the information age and knowledge economy, digital mining originates from the geological information system of mine or mining [20]. The purpose of digital mining is to improve the exchange of mine information, support automated mining and intelligent mining, ensure the safe, efficient, green and sustainable development of mining, and realize scientific mining. Digital mine construction is a gradual process and a complex system project [20].

Research and development of automated mining technology began in the mid-1980s. In Canada, NorandaInc has developed various automation equipment, including loading machine (LHD), light guide system, LHD remote control system, etc., to meet the needs of automation in underground hard rock mining [21]. In 1994, Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) launched the Mining Robotics Research Project. CSIRO researchers have developed an open-pit bucketcruise system, an accurate unloading model and an underground metal mine LHD automation system. Then, DynoIndus-trierASA of Norway, INCO Ltd. of Canada, and Tamrock of Finland implemented a $22.7 million mining automation project to increase labor productivity and reduce operating costs. Later, Sweden implemented the "Grountecknik2000" strategic plan for mine automation. At present, unmanned working face and unmanned mine based on fully automated mining/unmanned mining process have become an important research field [20].

According to Wu et al. [20], in order to construct a multidimensional and dynamic virtual reality system for coal mines, the new task of the digital coal mine is to establish a coal mine that uses the digital mine integrated platform in real time. In the new situation of deep mining, digital mining has four main directions: (1) digital mine integrated platform; ② Mining simulation system; (3) Underground positioning and navigation technology; ④ Intelligent perception of mining environment.

4. Strengthen continuous mining and roadway cutting machine mining

Gu and Li[22] have suggested that intensive mining and high plains rock stress induced rock cracking techniques should be adopted in deep metal mines. However, there are four key problems in deep hard rock mining: (1) The characteristics of high stress field and geological structure of deep mining and their mastering methods; (2) Knowledge of hard rock blockfracturing (full-blockfracturing) under the action of highland rock stress; (3) Support measures to control rock burst under high temperature conditions; ④ Knowledge of the coupling and flow of all solid-gas-liquid media in leaching mining of low grade deposits.

Due to the complex anisotropy of the target rock mass, it is difficult to use the roadway cutter (TBM) for mining. In mines, more than 70% of TBM damage is due to geology-related problems [23]. The use of TBM in hard rock mines, as well as the average length of tunnel drilling, has increased in recent years, but several limitations still limit the use of TBM in mines. In hard rock mines, when TBM is used for cutting, rock burst and sheet slope caused by stress redistribution of high stress rock mass is a major disadvantage, which will affect the operation safety and installation of roadway support.  The highly fractured and block-like rock mass is another factor in the application of overhead TBM cutters in mining. Loose chunks of rock have been known to clog and damage conversion funnels and cutter loading buckets. Therefore, in order to expand the application of TBM in deep mining, TBM needs to be improved, such as impact rods, to avoid damage to cutting machines, rock loading buckets and belt conveyors.

In addition to these problems encountered in hard rock mines, other concurrent problems involving water inrush and gas explosions have affected the use of TBM cutters in coal mines. A novel process of combined drilling and trenching has been implemented in China's Pingdingshan coalfield for CBM pre-extraction, which enhances both coal and gas recovery and reduces the possibility of gas explosions. Underground water in unfavourable geological bodies (such as faults and karst caves) can cause coal mine collapses.

5. Fluidized mining

Xie et al. [24,25] have pointed out that there is a theoretical limit of mining depth for traditional methods. Theoretically, it is estimated that once the buried depth of underground solid mineral resources exceeds 6000m, various existing mining methods will become unusable. Therefore, it must be recognized that the development and utilization of greater depths of mineral resources requires disruptive innovations in theory and technology. For this purpose, Xie et al. [25] proposed a theoretical and technical concept of fluidization mining of deep underground solid mineral resources (FIG. 2). Based on a mining model similar to TBM, the idea is to realize in-situ, real-time and integrated utilization of deep underground solid mineral resources through mining, selection, smelting, filling, power generation and gasification of solid resources, that is, to convert solid resources into gas, liquid or a mixture of gas, liquid and solid materials. As a result, the coal mines of the future will have no workers going down the mine, no coal being extracted, no coal piling up, no dust polluting the air, and instead will have electricity and energy delivered in a clean, safe, smart, environmentally sound and eco-friendly way.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card