Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Opportunities and challenges of deep mining

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 820 次浏览: | Share:

1. Introduction

The mining of the earth's resources has a long history, the shallow coal and mineral resources are gradually depleted, and the mining of coal and mineral resources is constantly pushed deeper into the earth. At present, 1000m deep mining is a common phenomenon, the mining depth of coal has reached 1500m, the development of geothermal has exceeded 5000m, the depth of non-ferrous metal mines has reached about 4500m, and the depth of oil and gas mining has reached about 7500m. In the future, deep mining will become common. As early as the 1980s, Poland, Germany, the United Kingdom, Japan and France had coal mining depths of more than 1,000 m, and China now has 47 coal mines mining depths of more than 1,000 m[1,2]. In the case of metal mines, according to incomplete statistics, there were at least 80 mines more than 1,000 m deep before 1996, mainly located in South Africa, Canada, the United States, India, Australia, Russia and Poland. The average depth of metal mines in South Africa reaches 2000m, of which the WesternDeep Well gold mine has reached 4800m[3].

The deep rock mass is characterized by high primitive rock stress, high temperature and high water pressure. Compared with shallow resource mining, deep mining may involve rock burst, large-scale collapse and large-scale outburst of coal, gas and water mixture. These events are often complex in nature and difficult to predict and control. The characteristics and boundary conditions of deep mining rock mass are the initial causes of deep mining disasters [2]. For example, when the mining depth reaches about 1000m, the primary rock stress caused by the overlying rock layer, the structural characteristics and the stress concentration caused by the mining operation can lead to the fracture and damage of the surrounding rock [4]. Under high stress, accidents may occur more frequently because the accumulated deformation energy is more obvious.

Under the conditions of high stress, high temperature and high water pressure, the disturbance generated by mining operations can lead to sudden and unpredicted damage of rock mass, which is manifested as large-scale instability and collapse [5]. In addition, at very deep depths, the deformation and fracture characteristics of rock mass often show strong time-related characteristics [6]. The disturbance stress and the time-dependent characteristics of rock mass deformation caused by deep mining engineering may lead to the occurrence of disasters which are very difficult to predict.

Various new problems in rock mechanics and mining engineering arising from deep mining have been studied. At present, most of the research work focuses on regional fracture of deep surrounding rock [7-10], large extrusion failure [11], brittle to plastic transformation of rock mass [12], energy characteristics of dynamic failure in deep mining [13], visualization of stress field [14,15], and rock mass deformation and displacement caused by deep mining [1,16]. Although the results of these studies have revealed some mechanical characteristics of deep mining, some theories, processes and methods related to deep mining are still in the initial stage. Xie[2] believes that this is due to the limitations of current rock mechanics theories, which are based on material mechanics and have little relationship with deep mining problems and engineering geological activities. Therefore, for deep mining, it is necessary to consider the characteristics of primary rock and the mechanical properties of rock mass caused by mining.

2. Rock mass support of deep mine

In mining and other underground engineering, the primary rock stress is the main factor affecting the deformation and failure of underground rock mass. With the increase of mining depth, the influence of primary rock stress on the fracture and stability of surrounding rock becomes more obvious, so it is very important to choose rock support technology.

He et al. [4] developed the asymmetric coupling support technology of soft rock roadway, including floor heave control technology, dual anchoring control technology of large-section roadway intersections, and strengthening design technology of pump station cavity. These techniques have been successfully applied in field support work [17]. According to the field test results, Niu et al. [18] suggested that in order to resist creep deformation, the dynamic reinforcement process of rigid-flexible coupling should be adopted to provide the initial flexible support for the stable broken surrounding rock in the early stage, the method of reserving deformation should be used to cope with the unloading of high stress in the middle stage, and the support with high strength and high stiffness should be adopted for the whole section in the later stage. He et al. [17] further developed a test system called rock burst in deep mining. In order to solve the damage problem of common supporting materials of large deformation surrounding rock, an energy-absorbing bolt with large extension and constant resistance was developed, as shown in FIG. 1 (a) and (b) [17]. Through its own large deformation, this kind of bolt can resist the large extrusion of rock mass caused by sudden deformation energy. The output range of the bolt is usually 120~200kN, and the deformation is 0.5~1m. Li et al. [19] developed an energy-absorbing rock mass support device for rock burst prone surrounding rock and extruded surrounding rock, that is, D-bolt [Figure 1 (c)]. For a 200mm D-bolt, the average impact load is 200~300kN, and the accumulated kinetic energy absorbed is 47kJ· m-1.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card