Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Future chemical technology development guide

来源: | 作者:佚名 | 发布时间 :2023-11-28 | 407 次浏览: | Share:

This can achieve profit maximization and sustainable development while reducing material production costs and improving material properties.

Intrinsic properties of future chemical products

Future chemical products will be designed to reduce or even eliminate hazards while maintaining functional effectiveness.

Here, the definition of hazards is broad, including physical hazards (such as explosions and corrosion), global hazards (such as greenhouse gases and ozone depletion), and toxicological hazards (such as carcinogenesis and endocrine disruption).

Traditional ways of dealing with hazardous chemicals are often to prevent leaks, such as using protective equipment or exhaust gas purifiers; But when prevention and control mechanisms fail, the results can be catastrophic.

The idea of green chemistry is to shift the focus of risk reduction to harm reduction.

It is important to note that the hazard is an inherent property of the chemical and a result of design choices. Therefore, it is necessary to redesign chemical products and production processes after in-depth understanding of molecular mechanisms, so as to avoid physical and mental damage to human beings and damage to the environment.

An expanded definition of performance should therefore include the function of chemicals and their inherent properties, including their renewability, non-toxicity and degradability in the environment.

reproducibility

The transition from petrochemical to renewable chemistry must be carefully designed in an integrated system environment, taking into account possible negative impacts from factors such as land conversion, water use or competition with food production.

Crucially, the use of benign processes enables an important shift towards renewable feedstocks, including the shift from linear to circular processes.

Therefore, materials that are currently considered low value must be disposed of as renewable raw materials in the future. Examples of the use of low-value "waste" include the conversion of lignin from paper mill waste into feedstock for the production of vanillin, and the partial replacement of petroleum-based propylene oxide with direct use of carbon dioxide in polyurethane production, which would significantly reduce carbon emissions while improving other environmental parameters.

Chemists need to think more deeply about the problem of "waste design" : how to adjust the synthesis route to minimize the disposal of by-products, or make by-products usable as feedstock

nontoxicity

The design of non-toxic chemical products needs to be achieved through cooperation in chemistry, toxicology, genomics and other related fields. There is a need to understand and study the underlying molecular mechanisms, including how molecules are distributed, absorbed, metabolized, and excreted in the body, and how physico-chemical properties such as solubility, reactivity, and cellular permeability affect these processes.

Work is under way to predict and model toxicity. However, models rely on limited available toxicity data, which is currently being collected by a number of projects in the US and the EU.

degradability

The chemicals of the future must be designed to be non-persistent compounds that degrade easily and do not damage the environment.

For example, a pesticide with very low toxicity to mammals and rapid degradation can be chemically modified to improve its biodegradability; Some renewable sources of succinic acid based plasticizers can be used to synthesize non-toxic polyvinyl chloride (PVC) polymers that can be rapidly degraded.

Molecular characteristics and environmental mechanisms that lead to persistence need to be understood in order to build predictive models. Routine assessment of the potential persistence of synthetic compounds is critical for every (newly) designed compound that may eventually be distributed in the environment (such as pharmaceuticals and personal care products).

Paradoxically, stability may be a desirable property when considering the energy expenditure of the compound modification, the synthetic route, and the molecular complexity.

An important consideration is to evaluate whether this "investment" has value-added applications, rather than simply pursuing the design of a degradation pathway.

Highly complex molecules of renewable origin that are not natural compounds need to be re-integrated into the value chain by designing reuse or recycling routes; If the molecule is a natural compound, it is biodegradable regardless of its complexity.

Redesigning the chemical value chain with non-fossil raw materials

Today's chemical industry is almost entirely dependent on oil, natural gas and coal as a source of carbon. The petrochemical value chain that emerged in the second half of the 20th century formed a highly integrated network, sometimes referred to as the "oil tree."

In terms of embedded energy, embedded materials (including water), waste generation, and environmental and economic costs, the use of green conversion methods and processes reflects the advantages of the transition from fossil resources to renewable resources

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card