Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Future chemical technology development guide

来源: | 作者:佚名 | 发布时间 :2023-11-28 | 403 次浏览: | Share:

Chemistry has a long history of creating many important high-quality products and processes, but it has also brought problems. For sustainable development, what characteristics and production processes of chemical products will society need in the future? It's worth thinking about.

World science

Based on the frontiers of world science; Focus on global science and technology hot topics; Tracking the stories behind scientific discoveries; Provide a stage for the collision of academic ideas.

In January 2020, Professor Julie B. Zimmerman, Associate Director of the Yale Center for Green Chemistry and Green Engineering; Paul T. Anastas, the father of green chemistry; and Hanno C. Rekpor, associate professor at Yale University. Erythropel and Walter Leitner, former editor-in-chief of the journal green chemistry, published their co-authored review, "Designing for a green chemistry future," in Science.

At the beginning of 2020, this digital year that seems to have a transformational significance for mankind, with the title of "Blueprint for the future of Green chemistry", profoundly describes the ideas and suggestions for the sustainable development of green chemistry, and puts forward the twelve principles of green chemistry, which have to be said to have profound meaning.

-- Professor Jiang Xuefeng of East China Normal University

In a sustainable society, the material base depends to a large extent on chemical products and their production processes, which are designed according to the principle of "good for people's lives". The inherent properties of molecules can be considered from the earliest stage (i.e. the design stage) to solve problems such as repeatability, risk and stability of products and processes. The chemical products, raw materials and manufacturing processes of the future need to integrate green chemistry and green engineering into the concept of sustainable development. This transformation requires advanced technology and innovation, as well as systems thinking and system design that starts at the micro molecular level and has a positive impact on a global scale.

When designing for the planet of the future, the scientific question facing the field of chemistry is no longer whether chemical products are necessary, but what characteristics and processes of chemical products are required for a sustainable society?

Chemistry has a long history of creating many important high quality products and processes. The current chemical industry is a production chain that relies on raw materials, which are mainly limited fossil resources in nature. These reactants are often highly reactive and toxic, often resulting in accidental leakage, resulting in poisoning of workers (such as the methyl isocyanate leak in Bhopal, India; Dioxins have leaked in Times Beach, Missouri, USA, and Seveso, Italy).

At the same time, most manufacturing processes produce an even higher proportion of waste (often toxic, persistent, and bioaccumulative) than expected products, especially when product complexity increases (e.g., specialty chemicals produce 5 to 50 times more waste than expected products, and pharmaceuticals 25 to 100 times more).

Target chemical products are often designed for their intended use to control the production environment to reduce the potential hazards of spills, and these hazards are often not assessed, possibly due to the lack of appropriate tools and models for a long time, as evidenced by numerous accidents.

Since chemical products continue to provide many conveniences to society, the design of chemical products in the future must contain two objectives:

One is how to maintain and improve performance,

The second is how to limit or eliminate harmful effects that threaten the sustainable development of human society.

Answering these questions is a serious scientific challenge.

A large number of scientific achievements in the field of green chemistry and green engineering show that chemical products and production processes can reduce the adverse impact on human society while realizing more functions. These successes are not hearsay, but need to be achieved through a systematic system of thinking.

In order to achieve this goal, it is necessary to change not only the conditions and environment in which chemical products are produced and used, but also the inherent characteristics of chemical products and reagents themselves along the entire value chain, from raw materials to applications. This requires shifting the definition of "performance" from "function" to "function and sustainability," a goal that can only be achieved by grasping the intrinsic properties of molecules and their variations and designing them.

Design and innovation should be carried out in a comprehensive system framework

It is very challenging to pursue sustainable design improvements in complex systems using traditional simplification methods.

In the chemical industry, although the reductionist focus only on function can extend the life of chemical products to a certain extent, it may still exist in water after the end of life and be exposed to unprotected people.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card