Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Function and principle of generator excitation system?

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 781 次浏览: | Share:

The excitation system of synchronous generator is an important component

01 Main tasks of the excitation system

1. Maintain the generator terminal voltage at a given level;

2. Control reactive power distribution;

3. Improve the stability of parallel operation of synchronous generator;

4. Improve the power system relay protection device operation accuracy;

5. Quickly disable the magnetic field.

Maintain the terminal voltage

Under the normal operation of the generator, the excitation regulation device shall maintain the generator terminal voltage or the high voltage side of the main transformer at a given level. When the generator load changes, the excitation must be adjusted to ensure that the generator terminal voltage is a given value. The simplified phasor diagram from the generator is shown below:

From the generator simplified phasor diagram:

Eq=Uf+jLXd

Among them, EQ-generator no-load potential;

Uf- generator terminal voltage;

If- generator stator current;

Xd- generator synchronous reactance.

As can be seen from the above formula, when the generator no-load potential Eq is constant, the generator terminal voltage Uf will decrease with the increase of the generator stator current If, and increase with the decrease of the generator stator current If. To ensure that the generator terminal voltage Uf is constant, the no-load potential Eq of the generator must be increased or decreased with the increase or decrease of the generator load current. Eq is a function of the generator excitation current IL, and if saturation is not considered, the no-load potential Eq is proportional to the excitation current IL. Therefore, in the operation of the generator, as the generator load current changes, the generator terminal voltage will also change, in order to maintain the generator terminal voltage at a given level, it is necessary to automatically increase or reduce the excitation current through the regulation of the excitation device.

Reactive power distribution

When the generator is running side by side with the power system, its output active power depends on the prime mover input mechanical power, and the output reactive power is related to the generator excitation current, in actual operation, the generator bus running side by side will not be infinite bus, then change the generator excitation will make the generator terminal voltage and reactive power are changed, but the end voltage change is small, and reactive power There will be large variations in power. Controlling reasonable reactive power distribution between parallel generators is an important function of the excitation regulation device. How to distribute reactive power reasonably between generators running in parallel is related to the difference rate of generator terminal voltage. The adjustment rate of generator terminal voltage is defined as the input of excitation device adjustment function, the given voltage of the generator is unchanged, and the power factor of the generator is zero, when the reactive load of the generator increases from zero to rated, the terminal voltage change rate K expressed by the percentage of rated voltage of the generator, that is, formula 2:

K(%)=(UF0-UFR)/UFE

Where, K- generator error adjustment rate;

Ufo-generator no-load terminal voltage;

UFE- rated voltage of generator;

Uer-generator terminal voltage when the reactive current is the rated current of the stator.

The difference adjustment rate of generator terminal voltage reflects the change rate of generator terminal voltage UFR with reactive power output under the action of excitation regulation device. The generator terminal voltage UF may decrease with the increase of the output reactive current IR of the generator, that is, UF<UFO, then the generator has a positive voltage adjustment or the generator terminal voltage UF may increase with the output reactive current IR of the generator, that is, UF>UFO, then the generator has a negative voltage adjustment; If the generator terminal voltage UF does not change with the generator output reactive current IR change, that is, UF=UFO said that the generator has no voltage adjustment, no difference regulation. There are three modulation characteristics shown in the figure below.

Generator adjustment characteristic diagram

When multiple generator ends work directly in parallel, in order to have a stable reactive power distribution between the parallel sets, these generators must have a positive voltage adjustment, and the adjustment rate K=3%~5%. If the generator is a unit connection, that is, it is connected in parallel on the high-voltage bus through the booster transformer, the generator is required to have a negative adjustment, and the role of the negative adjustment is to partially compensate the voltage drop formed by the reactive current on the booster transformer, so that the high-voltage bus of the power plant is more stable.

Improve operational stability

The stability problems of power system can be divided into three types: static stability, transient stability and dynamic stability. The so-called static stability refers to the stability of the power system after small interference, that is, the ability to restore the original equilibrium state after small interference, while the transient stability refers to the stability of the power system after large interference, which is mainly the short-circuit effect, that is, whether the system can work stably in the new equilibrium state after large interference, and the dynamic stability refers to the power system after small interference and large interference Interference, taking into account the role of various automatic control devices, the stability of the long process.

  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module