Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Function and principle of generator excitation system?

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 940 次浏览: | Share:

The excitation system of synchronous generator is an important component

01 Main tasks of the excitation system

1. Maintain the generator terminal voltage at a given level;

2. Control reactive power distribution;

3. Improve the stability of parallel operation of synchronous generator;

4. Improve the power system relay protection device operation accuracy;

5. Quickly disable the magnetic field.

Maintain the terminal voltage

Under the normal operation of the generator, the excitation regulation device shall maintain the generator terminal voltage or the high voltage side of the main transformer at a given level. When the generator load changes, the excitation must be adjusted to ensure that the generator terminal voltage is a given value. The simplified phasor diagram from the generator is shown below:

From the generator simplified phasor diagram:

Eq=Uf+jLXd

Among them, EQ-generator no-load potential;

Uf- generator terminal voltage;

If- generator stator current;

Xd- generator synchronous reactance.

As can be seen from the above formula, when the generator no-load potential Eq is constant, the generator terminal voltage Uf will decrease with the increase of the generator stator current If, and increase with the decrease of the generator stator current If. To ensure that the generator terminal voltage Uf is constant, the no-load potential Eq of the generator must be increased or decreased with the increase or decrease of the generator load current. Eq is a function of the generator excitation current IL, and if saturation is not considered, the no-load potential Eq is proportional to the excitation current IL. Therefore, in the operation of the generator, as the generator load current changes, the generator terminal voltage will also change, in order to maintain the generator terminal voltage at a given level, it is necessary to automatically increase or reduce the excitation current through the regulation of the excitation device.

Reactive power distribution

When the generator is running side by side with the power system, its output active power depends on the prime mover input mechanical power, and the output reactive power is related to the generator excitation current, in actual operation, the generator bus running side by side will not be infinite bus, then change the generator excitation will make the generator terminal voltage and reactive power are changed, but the end voltage change is small, and reactive power There will be large variations in power. Controlling reasonable reactive power distribution between parallel generators is an important function of the excitation regulation device. How to distribute reactive power reasonably between generators running in parallel is related to the difference rate of generator terminal voltage. The adjustment rate of generator terminal voltage is defined as the input of excitation device adjustment function, the given voltage of the generator is unchanged, and the power factor of the generator is zero, when the reactive load of the generator increases from zero to rated, the terminal voltage change rate K expressed by the percentage of rated voltage of the generator, that is, formula 2:

K(%)=(UF0-UFR)/UFE

Where, K- generator error adjustment rate;

Ufo-generator no-load terminal voltage;

UFE- rated voltage of generator;

Uer-generator terminal voltage when the reactive current is the rated current of the stator.

The difference adjustment rate of generator terminal voltage reflects the change rate of generator terminal voltage UFR with reactive power output under the action of excitation regulation device. The generator terminal voltage UF may decrease with the increase of the output reactive current IR of the generator, that is, UF<UFO, then the generator has a positive voltage adjustment or the generator terminal voltage UF may increase with the output reactive current IR of the generator, that is, UF>UFO, then the generator has a negative voltage adjustment; If the generator terminal voltage UF does not change with the generator output reactive current IR change, that is, UF=UFO said that the generator has no voltage adjustment, no difference regulation. There are three modulation characteristics shown in the figure below.

Generator adjustment characteristic diagram

When multiple generator ends work directly in parallel, in order to have a stable reactive power distribution between the parallel sets, these generators must have a positive voltage adjustment, and the adjustment rate K=3%~5%. If the generator is a unit connection, that is, it is connected in parallel on the high-voltage bus through the booster transformer, the generator is required to have a negative adjustment, and the role of the negative adjustment is to partially compensate the voltage drop formed by the reactive current on the booster transformer, so that the high-voltage bus of the power plant is more stable.

Improve operational stability

The stability problems of power system can be divided into three types: static stability, transient stability and dynamic stability. The so-called static stability refers to the stability of the power system after small interference, that is, the ability to restore the original equilibrium state after small interference, while the transient stability refers to the stability of the power system after large interference, which is mainly the short-circuit effect, that is, whether the system can work stably in the new equilibrium state after large interference, and the dynamic stability refers to the power system after small interference and large interference Interference, taking into account the role of various automatic control devices, the stability of the long process.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card