Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Structure and working principle of generator

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 499 次浏览: | Share:

I. Main structure of generator

Main mechanism of generator

The generator is usually composed of stator, rotor, end cap and bearing. The stator consists of a stator core, a wire wrap winding, a frame, and other structural parts fixing these parts. The rotor is composed of rotor core (or magnetic pole, magnetic choke) winding, guard ring, center ring, slip ring, fan and rotating shaft and other components.

The stator and rotor of the generator are connected and assembled by the bearing and the end cap, so that the rotor can rotate in the stator, do the motion of cutting the magnetic force line, thus generating the induced potential, which is led out by the terminal and connected in the loop, and the current is generated.

Two. Generator working principle

How a generator works

Generators are based on Faraday's law of electromagnetic induction, which states that a piece of metal, such as a copper wire, moves in a magnetic field and generates an electric field inside the metal.

The charge inside the metal flows along the electric field. If the piece of metal were not a ring, the charge would accumulate at both ends, in the form of a voltage, and by connecting the piece of metal in a loop (the rest of the loop is not in a magnetic field), an electric current would be generated, and electricity would be generated by the generator.

Therefore, the basic principle of the generator is to fix the permanent magnet or metal, let the metal or permanent magnet keep moving, the movement is relative, so that the piece of metal that keeps moving in the magnetic field will continue to generate electricity.

From this point can distinguish different generators, hydraulic generators is to use the energy of water falling from the height to maintain the movement of metals, thermal power is to use the power of the steam produced by fire boiling water to maintain the movement of metals

Iii. Generator classification

There are many types of generator sets, and there are different types of units according to different standards, such as:

1. Divide according to power source

There are diesel generator set, gas generator set, gasoline generator set, wind generator set, solar generator set, hydropower generator set, coal-fired generator set and so on.

2. Electric energy mode

According to the conversion of electrical energy can be divided into alternator and DC generator two categories.

Alternator is divided into synchronous generator and asynchronous generator two kinds. Synchronous generators are divided into hidden pole synchronous generators and salient pole synchronous generators. Synchronous generators are most commonly used in modern power stations, and asynchronous generators are rarely used.

One of the most commonly used is the diesel generator set.

Iv. Common generators

The following is the working principle of various common generators.

4.1Three phase AC synchronous generator

Synchronous generator is one of the most commonly used alternator. In the modern power industry, it is widely used in hydroelectric power generation, thermal power generation, nuclear power generation and diesel power generation.

Because the synchronous generator generally uses DC excitation, when it runs independently, it can easily adjust the voltage of the generator by adjusting the excitation current. If it is incorporated into the power grid operation, because the voltage is determined by the power grid, it cannot be changed, and the result of adjusting the excitation current is to adjust the power factor and reactive power of the motor.

The stator and rotor structure of synchronous generator is the same as that of synchronous motor, generally adopts three-phase form, and only single-phase armature winding is used in some small synchronous generator.

The performance of synchronous generator is characterized mainly by no-load characteristics and load operation characteristics. These characteristics are an important basis for users to choose generators.

Working principle of synchronous generator

How it works:

The basic working principle of synchronous generator includes the following aspects.

1. Establishment of magnetic field. When the generator is running, the excitation winding through the DC excitation current, the same polarity of the excitation field is established, that is, the main magnetic field is established.

2. Cutting motion. The process in which the prime mover, diesel generator set or gasoline generator set drag the rotor to rotate, and the exciting magnetic field of the same type rotates with the shaft and cuts the stator phase winding in sequence.

3. After the operation of the current-carrying conductor generator, the three-phase symmetrical current group acts as a power winding, which is called the induced electromotive force or the carrier of induced current.

4. Generation of alternating electromotive force

The working principle of the synchronous generator is actually the principle of electromagnetic induction. The mechanical energy is converted into electrical energy by the relative motion of the rotor magnetic field and the stator windings. When the rotor is driven by the prime mover, the rotor magnetic field and the stator conductor do relative motion, that is, the conductor cuts the magnetic route, so the induced electromotive force is generated in the conductor, and its direction can be judged according to the right hand rule of u. Because the position of the rotor pole is that the conductor cuts the magnetic field line in a vertical direction. Therefore, the induced electromotive force in the stator winding is maximum at this time, when the magnetic pole is rotated 90 degrees, the magnetic pole is horizontal, the conductor does not cut the magnetic field line, and the induced electromotive force is zero. When the rotor is rotated 90 degrees, the induced electromotive force of the stator winding cuts the magnetic force line in the vertical direction, so that the induced electromotive force reaches the maximum value, but the direction is opposite to the previous. When the rotor turns another 90 degrees. And the induced electromotive force is zero. In this way, the rotor rotates one week, and the induced electromotive force of the stator winding also changes positively and negatively. If the rotor is continuously and evenly rotated, a periodically changing AC electromotive force will be induced in the stator winding, and the AC current can be output through the lead line.

  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board
  • ABB MC91 HESG440588R4 HESG112714/B Wireless Router Modules
  • ABB PPD113-B03-23-111615 Excitation system controller
  • ABB AB91-1 HESG437479R1 HESG437899 Graphics Expansion Module
  • ABB IT94-3 HESG440310R2 HESG112699/B controller
  • ABB NF93A-2 HESG440280R2 HESG323662R1/HESG216665/K Module Controller
  • ABB IW93-2 HESG440356R1 HESG216678/B I/O module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB RB520 Dummy Module For Submodule Slot
  • ABB SR511 3BSE000863R1 SR511 Regulator 24V/5V
  • ABB DSDP140B 57160001-ACX Counter Board
  • ABB T-1521Z High-Performance Industrial Controller
  • ABB R-2521Z Industrial Control Module
  • ABB COM0002 Industrial Communication Module
  • ABB TAS.580.0550G00 Industrial Controller Module
  • ABB TAS.580.0560G00 Industrial Controller Module
  • ABB SPAJ110C Earth-fault relay
  • ABB TP858 3BSE018138R1 Industrial Control Module
  • ABB SD821 3BSC610037R1 Digital Controller
  • ABB 128877-103 High Precision Industrial Control Module
  • ABB CI853-1 communication interface module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB 5SDF1045H0002 IGBT Silicon Controlled Rectifier
  • ABB TC512V1 3BSE018059R1 Bus Module
  • ABB UCD240A101 Industrial Controller Module
  • ABB TC820-1 Industrial Control Module
  • ABB PM820-2 PLC Pulse Counter Module
  • ABB PM820-1 3BSE010797R1 Processor Module
  • ABB TP830 Industrial Automation Control Module
  • ABB 3ASC25H705/7 control module
  • ABB UAD154A Industrial Automation Module
  • ABB PPD113B01-10-150000 3BHE023784R1023 Controller Module
  • ABB UNS2880B-P V1 Digital I/O Module
  • ABB PFEA112-20 3BSE050091R20 Tension Control amplifier
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Communication
  • ABB PPC380AE02 Industrial Control Module