Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Ocean thermal power generation

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 347 次浏览: | Share:

Development course

The idea of thermoelectric power generation was proposed as early as 1880 by the French D 'Arsonde (1851 ~ 1940), and in 1929 his student Claude (G. Clude) built a 22-kilowatt seawater thermoelectric power test plant on the coast of Cuba. The Claude pilot plant's power system uses an opencycle (it is worth mentioning that one of the main advantages of this cycle is that fresh water can be obtained from it). Claude's ocean thermoelectric power plant ended in failure, but it proved the feasibility of ocean thermoelectric power from the experiment. In order to avoid the problems encountered in the ocean thermal power station built by Claude, in 1965, the Anderson and his son in the United States proposed a power generation method using propane as the working medium.

In 1979 the United States first developed the ocean temperature difference generator (Oceanthermalenergyconversion OTEC) system, the capacity is only 50 kw. In 1981, it was planned to develop a large 40MW plant and put its 1MW intermediate unit into trial. The United States 50kWMINI-OTEC seawater thermal power generation ship, converted from a barge, the generator emits 50kW of electricity, most of which is used for pumping water, with a net output of 12-15kW. This is a historic development in the use of ocean heat energy. Due to the small temperature difference of the OTEC system, the net efficiency of the Rankine cycle is only 3%-5%.

In the "Sunshine Plan" of the Japanese Institute of Industry and Technology, the low-temperature differential power Generation Committee has planned a floating power station with a power generation capacity of 100,000 kilowatts, and the Rankine cycle efficiency of the power station is 3.44% and the net efficiency is 2.04%. The Peruvian seawater thermal power plant, part of Japan's "Sunshine Project", uses freon HCFC22 instead of ammonia as a working medium. Since the 1980s, Japan has developed power generation equipment with different capacities such as 50kW, 75kW, and 100kW, and in 1996, it also verified the use of NH3/ water mixed working medium cycle test equipment, as well as power generation equipment set on the surface of the ocean. The power station is built on shore and has a maximum generating capacity of 120kW and a net output of 31.5kW.

The Indian government will develop Marine thermal energy as one of the important energy sources in the future. In 1997, the National Institute of Ocean Technology of India and the University of Japan signed an agreement to jointly develop the Marine thermal energy of the Indian Ocean, jointly develop 1MW power generation equipment, and develop 25-50MW large-scale commercial equipment after the verification and evaluation of the simulator. We intend to invest in the establishment of a commercial OTEC system in India. In 1999, in the southeast sea of India, the world's first set of 1MW Marine thermal power generation experiment equipment was successfully operated.

In 1989, Taiwan proposed to the Pacific International Technology Research Center (PICHTR) to implement the OTEC commercialization strategic plan in Taiwan, preparing to build a 5MW small-scale OTEC pilot power plant on the eastern coast of Taiwan Island. Taiwan Hongchai seawater thermal power plant plans to use the 36-38℃ of waste hot water discharged from the Maanshan nuclear power plant and 300m deep cold seawater (about 12℃) temperature difference to generate electricity. The cold water pipe, with an inner diameter of 3m and a length of about 3200m, extends to a trench of about 300m depth in the Taiwan Strait. It is expected that the power generation of the power plant will be 14.25MW, and the net power generation will be about 8.74MW after deducting the power consumption such as pumps.

Key technology

So far, the Marine thermoelectric power generation technology has made great progress in the research of thermal power cycle mode, efficient compact heat exchanger, working medium selection and Marine engineering technology, and many technologies have gradually matured.

1) Heat exchanger is the key equipment of ocean thermal power generation system. Titanium heat transfer and corrosion resistance is good, but the price is too expensive. Researchers at Argonne National Laboratory in the United States have found that the life of the improved brazed aluminum heat exchanger can reach more than 30 years in the corrosive warm seawater environment. Plate heat exchanger has small volume, good heat transfer effect and low cost, and is suitable for use in closed cycle.

2) The latest Lorentz cycle organic liquid turbine can work at 20-22℃ temperature difference, suitable for closed cycle equipment. Lorentz cycle is characterized by high thermal efficiency and close to the actual cycle, and its turbine uses more than two freon mixtures as working medium, and is matched with a suitable heat exchanger.

3) There are two types of ocean thermal power generation: shore-based and offshore. The shore-based type locates the power generation device on the shore and extends the pump to 500-1000m or deeper in the deep sea. The offshore type is to lift the suction pump from the ship, the generator set is installed on the ship, and the electricity is transmitted through the submarine cable. In 1979, the United States built a mini-OTCE power generation device on the western coast of Hawaii, which was the first time in the world to obtain practical electricity from ocean temperature differences. The Pacific High Technology International Research Center (PICHTR) has also developed subsidiary industries using cold seawater for air conditioning, refrigeration and mariculture, which show good market prospects in tropical islands.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board