Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Ocean thermal power generation

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 891 次浏览: | Share:

Power generation principle

The ocean thermal power generation system uses the temperature difference between shallow and deep layers of seawater and different heat sources of temperature and cold to generate electricity through heat exchangers and turbines. In the existing Marine thermal power generation system, the source of heat energy is the warm sea water on the ocean surface, and there are basically two methods for power generation: one is to use warm sea water to evaporate the low boiling point working fluid in the closed circulation system; The other is that the warm water itself boils in a vacuum chamber. Both methods produce steam, which then drives a turbine to generate electricity. The steam after power generation can be cooled by cold sea water at a very low temperature and turned back into a fluid to form a cycle. Cold sea water is generally drawn from a depth of 600 to 1000m below sea level. Generally, the temperature difference between warm sea water and cold sea water is above 20 ° C, which can generate net electricity.

Cold seawater extracted from the deep sea, not only low temperature (generally 4, 5 ° C), sterile and nutrient rich, has a variety of uses, such as the production of fresh water, freezing, air conditioning, aquaculture, pharmaceutical, etc., can improve the economic value of ocean temperature difference power generation, this application is called deep sea water utilization (DOWA).

Systematic classification

closed

Closed circulation system uses low boiling point working fluid as working medium. Its main components include evaporators, condensers, turbines, working fluid pumps, and warm and cold sea pumps. Because the workflow system circulates in a closed system, it is called a closed cycle system. When the warm sea water pump pumps up the warm sea water and conducts its heat source to the working fluid in the evaporator, it evaporates. The evaporated working fluid expands adiabatically inside the turbine and pushes the turbine blades to generate electricity. The generated working fluid is transferred to the condenser and its heat is transferred to the cold seawater pumped from the deep layer, which is cooled and restored to a liquid, and then pumped through the circulating pump to the evaporator, forming a cycle. The working fluid can be recycled repeatedly, and its types are ammonia, butane, chlorofluorocarbons and other gas coolants with high density and high vapor pressure. Ammonia and HCFC-22 were the most likely working fluids. The energy conversion efficiency of closed cycle system is 3.3% ~ 3.5%. If the energy consumption of the pump is deducted, the net efficiency is between 2.1% and 2.3%.

open

The open circulation system does not use the working fluid as the working medium, but directly uses warm seawater. First of all, warm sea water is imported into a vacuum evaporator, so that it is partially evaporated, and its vapor pressure is about 3kPa (25 ° C), equivalent to 0.03 atmospheric pressure. The water vapor is adiabatically expanded in the low-pressure turbine, and after the work is done, it is introduced to the condenser, where it is cooled into a liquid by cold seawater. There are two methods of condensation: one is that water vapor is directly mixed into cold seawater, called direct contact condensation; The other is to use a surface condenser, where the water steam is not directly in contact with the cold seawater. The latter is the incidental method of preparing fresh water. Although the energy conversion efficiency of the open system is higher than that of the closed system, due to the uncertainty of the efficiency of the low pressure turbine, and the low density and pressure of the water vapor, the power generation device has a small capacity and is not suitable for large capacity power generation.

hybrid

The hybrid circulation system is somewhat similar to the closed circulation system, the only difference is the evaporator part. The warm water of the hybrid system is first passed through a flashevaporator (a device that rapidly compresses a fluid and then rapidly decompresses it to produce boiling evaporation), which converts some of the warm water into water vapor. The steam is then channelled into a second evaporator (a combination of evaporator and condenser). Here the water vapor is cooled and released to its potential; This potential in turn evaporates the working fluid at a low boiling point. The working fluid circulates through this to form a closed system. The purpose of the hybrid power generation system is to avoid the biological attachment of warm seawater to the heat exchanger. The system can also produce fresh water byproducts in a second evaporator. At the same time, the low capacity of the open power generation system can be improved.

There are not many countries in the world that develop Marine temperature difference technology, and Japan, France, Belgium and other countries have built a number of Marine temperature difference energy power stations, with power ranging from 100kW to 5MW. Japan has invested heavily in the research and development of Marine thermal energy, and is ahead of the United States in Marine thermal power generation systems and heat exchanger technology, and has built a total of three Marine thermal test power stations, all of which are shore-based. It is expected that by 2010, there will be 1,030 Marine thermal power stations in the world.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card