Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Ocean thermal power generation

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 792 次浏览: | Share:

4) China is also rich in ocean temperature difference energy, but the research work started late. In 1980 Taiwan Power Company planned to use waste heat from nuclear plants and ocean temperature differences to generate electricity. In 1985, Guangzhou Institute of Energy Research, Chinese Academy of Sciences began to study the method of "droplet lifting cycle" in temperature difference utilization. This method uses the temperature drop between surface and deep water to increase the potential energy of seawater.

Efficiency improvement

Marine thermal energy is a low-grade energy. Compared with existing biochemical energy and nuclear energy, the main reason why it cannot be applied commercially on a large scale is the low cycle thermal efficiency. The most effective way to improve the circulating thermal efficiency of OTEC system is to increase the temperature difference between cold and warm seawater, and the temperature difference between warm and cold seawater should be at least 20℃ to achieve ocean temperature difference power generation. According to the average temperature of the sea surface of 25 ° C, the cold sea water of about 5 ° C is generally taken from the depth of the ocean of about kilometers, if you want to continue to expand the temperature difference, the depth will be deeper. In this way, not only will the investment be greater, but the available sea area will be greatly reduced. Build a "buoy-type" solar pool on the sea surface, use natural sunlight to "boil" a pool of seawater, and then use a pump to draw out the warm seawater from the sea surface, and flow through the pipe to the bottom of the heated pool. In this way, the high temperature at the bottom of the pool can heat the warm water to 32 ° C, and the temperature difference between the water and the cold water at the bottom of the ocean can be increased to 27 ° C. In this way, after heating the solar pool, the efficiency of ocean temperature difference power generation can be increased by 10%, reaching about 12%, and the cost performance is greatly improved.

The research results of NoboruYamada et al. [28] show that the use of 5000m2 solar collector can increase the warm sea water by 20K ~ 40K, and the net efficiency of Rankine cycle of the ocean thermal power system (SOTEC) after the use of solar collector is increased from 2.3% to 6.3%-9.5%. The average annual thermal efficiency is 1.5 times higher than the net efficiency of conventional OTEC circulation systems. The technology can be used to increase the temperature of warm seawater, that is, the warm seawater extracted by the warm water pump is first sent to the solar collector for heating, and then enters the evaporator to heat the circulating working medium after the temperature rises. It can also be used to increase the temperature of the working medium at the inlet of the steam turbine, that is, the working medium out of the evaporator is sent to the solar collector for reheating, and then sent to the steam turbine to do work. The efficiency of Rankine cycle is improved by increasing the temperature of the working medium at the inlet of the steam turbine, no matter heating the warm seawater or the working medium with the solar collector. In this way, under the premise that the installed capacity of the unit is unchanged at 100kW, the improvement of the Rankine cycle efficiency of the SOTEC system reduces the mass flow rate of cold sea water, resulting in the power consumption of the cold sea pump is reduced by about 30% compared with that of OTEC, and the power consumption of the warm sea pump and circulating working medium pump is also reduced accordingly. Therefore, the net output work of SOTEC is higher than that of OTEC systems.

Technical problem

There are some technical problems in ocean temperature difference power generation, which is the bottleneck restricting the development of technology.

1) The surface of the heat exchanger is easy to attach microorganisms, which reduces the surface heat transfer coefficient, which has a great impact on the economy of the entire system. The research results of BergerLR et al show that when 25-50μm microorganisms are attached in the heat exchanger pipe, the heat transfer rate is reduced by 40-50%. The Argonne Laboratory in the United States found that intermittent chlorination for 1 hour a day can effectively control the attachment of organisms. However, this method has a certain impact on the environment, so it is still necessary to find a more suitable method. Scientists in a simulated heat exchanger experiment in 1977, after ten weeks of heat exchanger operation, despite the thin surface attachment of the heat exchanger, the heat transfer of the system is still significantly reduced. An experimental study in Hawaii in 1985 confirmed that although regular cleaning of microorganisms can remove most of the attached microorganisms, there is still a hard adhesion layer on the surface of the heat exchanger after long-term use that cannot be removed by simple cleaning. Another study showed that the use of sea rubber containing additives can effectively remove microorganisms attached to the system, but this will cause the microorganisms to attach and grow faster, and the cleaning will be more frequent.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller