Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Why don't electrons fall into the nucleus

来源: | 作者:佚名 | 发布时间 :2023-12-02 | 251 次浏览: | Share:

In the macroscopic, if two particles with dissimilar charges start at a certain distance apart, no matter what their mass is, how much charge they carry, if they are not affected by other external forces, only under the action of electrostatic force, they will attract each other along a straight line, and will not form a point charge revolving around another point charge atom-like system. In the microscopic particles, the nucleus is positively charged and the electron is negatively charged, and the electron will eventually form an atomic system moving around the nucleus under the electrostatic gravity of the nucleus, and will not fall into the nucleus, which is unexplained by the classical electromagnetic theory: the classical electromagnetic theory believes that the electron will continue to radiate electromagnetic waves due to accelerating motion around the nucleus, resulting in energy reduction and eventually falling into the nucleus. In fact, there are two main reasons why electrons do not fall into the nucleus: First, when electrons are pulled closer by the electrostatic gravity of the nucleus, they continue to "fission" and release photons to obtain recoil and avoid falling into the nucleus. The second is that the magnetic interaction between the nucleus and the electron provides the source of the angular velocity required for the electron to rotate around the nucleus.

Section 1 Evolution of atomic structure model

Human understanding of atomic structure is gradually deepening. Ancient Greek philosopher Democritus and others: everything is made up of a kind of particles called "atoms". In 1808, the British scientist Dalton put forward the concept of atom as the smallest unit of matter, that matter is directly composed of atoms; An atom is a tiny, indivisible, solid sphere; Atoms of the same class have the same properties.

In 1897, the British physicist Thomson found the electron in the discharge phenomenon of low-pressure gas, and determined that the electron is a part of the atom, the discovery of the electron made people realize that the atom is composed of smaller particles. In 1904, Thomson proposed a "cake model" or "watermelon model" of atomic structure, which suggested that the positive charges in the atom were evenly distributed like a cake, while the electrons were embedded in it like dates and arranged according to certain geometric laws (or embedded in the positively charged "watermelon flesh" like a "watermelon seed"). When the electron is disturbed, it vibrates near the equilibrium position and emits photons of a specific wavelength, which explains why atoms of various elements can emit different spectra.

In 1909, Rutherford found that most of the a particles could penetrate the thin metal foil without changing direction, and a few of the a particles were deflected at a certain Angle when they passed through the metal foil, and some of the particles bounced back completely. Rutherford thus speculated that most of the atoms are empty, and there must be a hard nucleus with positive charge that concentrates most of the mass of the atom. When a particle hits the nucleus, it will be bounced back, and when it deflects, it will change direction and deflect at a certain Angle. Because the space occupied by the nucleus is small, most of the A particles can penetrate through. In 1920, Rutherford proposed the concept of the neutron, which was confirmed in 1931, and suggested that the nucleus was composed of protons and neutrons. Rutherford drew an analogy between the structure of the solar system and the atom and proposed a planetary model of the atom. The atomic system is like the solar system, each atom has a very small nucleus, which concentrates almost all the mass of the atom, and has several units of positive charge, a number of electrons rotate around the nucleus outside the nucleus, and the nucleus at the core rotates the electrons around it by its strong electrostatic attraction. Because the number of positive charges in the nucleus is equal to the number of negative charges in the electron, the atom is normally neutral.

Later, it was pointed out that according to the classical electromagnetic theory, the process of electrons rotating around the nucleus is the process of accelerating the movement of electric charge, which will inevitably release electromagnetic waves, as the electrons continue to release electromagnetic waves and their energy continues to decrease, the electrons will fall into the nucleus along the helix, and in fact the atomic system is quite stable; At the same time, because the electron falls into the nucleus along the helix, the electron's orbit should be continuously changing, and the frequency of the photon emitted should also be continuously changing, but when people observe the atomic spectrum, they find that the atomic spectrum is often several independent spectral lines, which shows that the stable orbit of the electron in the atom is not continuous. For these reasons, the planetary model of the atom was rejected.

In 1913, the Danish physicist Bohr introduced Planck's quantum concept on the basis of the planetary model and proposed the layered atomic structure model. It is believed that an electron can only move in certain stable orbits within an atom, that it neither emits nor absorbs energy when moving in these possible orbits, that it emits or absorbs energy only when the electron transitions from one orbit to another, and that the energy emitted or absorbed is specific, and that the relationship between the emitted frequency and energy is given by E=hv, where h is Planck's constant. Bohr believed that the electron moves in a circle around the nucleus in certain possible orbits, and that the farther away from the nucleus the higher the energy, the possible orbits of the electron must be determined by the angular momentum of the electron must be an integer multiple of h/2π. Bohr's atomic theory introduced quantum concepts into the field of atoms for the first time, put forward the concepts of stationary states and transitions, and successfully explained the experimental law of hydrogen spectrum. But for slightly more complex atoms, such as helium, Bohr's theory is unable to explain their spectral patterns.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board