Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Electrons can "fission" and release photons to obtain recoil

来源: | 作者:佚名 | 发布时间 :2023-12-02 | 1010 次浏览: | Share:

The third section of electrons can "fission" to release photons to obtain recoil

For the nuclei and free electrons in the free state, one with positive charge and the other with negative charge, they will inevitably attract each other only under the action of electrostatic force. As the distance between the free electrons and the nucleus continues to shrink, the electrostatic attraction of the free electrons will also increase rapidly, which inevitably leads to the internal binding force of the free electrons being insufficient to resist the tearing effect of the electrostatic attraction of the nucleus at some point. At this time, the electron will "fission" release the photon, and after the electron fission releases the photon, its mass decreases and the recoil effect of the photon is obtained, and the internal binding force rapidly increases, which can resist the tearing effect of the electrostatic gravity of the nucleus. Therefore, after the first "fission" of the free electron, it will move to a stable orbit far away from the nucleus and stay in this orbit under the reaction of the photon. Since electrons have only a few specific "magic mass numbers", there is only one way to release photons from the free electron to the first fission, and the free electron must be in the position of the "magic mass" of the internal binding force after fission (because other masses of electrons are unstable).

When the electrons that have undergone "fission" are subjected to the disturbance of the nucleus again and continue to get close to the nucleus, as the distance between the electrons and the nucleus continues to decrease, it will inevitably lead to the enhancement of the electrostatic gravitational tearing effect of the nucleus. When the internal binding force of the electrons is less than the electrostatic gravitational tearing effect of the nucleus at some point, The electrons will split again, release photons, lose mass and recoil again, and the internal binding force will increase rapidly... In the process of electron close to the nucleus, the electron may undergo several "fission", each "fission" after the internal bonding force of the electron will increase, the mass will decrease. Because the electrostatic attraction of the nucleus always reduces the fission mass of the electron, the closer the electron to the nucleus the greater the electrostatic attraction, the greater the possibility of the electron deformation and release of photons, so the same electron in its stable state, the closer the mass from the nucleus, the smaller the mass, the greater the mass from the nucleus, of course, the mass of the free state of the electron is the largest.

The magnetic interaction between the electron and the nucleus provides the angular velocity for the electron to rotate around the nucleus

Macroscopic point charges must not be able to form atom-like systems. In the macro, if two particles with dissimilar charges start at a certain distance apart, assuming that they are not acted on by other external forces, no matter what their mass and how much electricity they carry, they will attract each other along a straight line under the action of electrostatic force, and will not form an atom-like system in which one point charge rotates around another point charge.

An electron needs an angular velocity to move around the nucleus. It has been pointed out that an electron needs a certain angular velocity to rotate around the nucleus, and where does this angular velocity come from? In fact, this problem was considered as early as hundreds of years ago when Newton studied the motion of planets around the sun. Newton began to think about the formation of the solar system after discovering the gravitational force. He believed that God pushed the formation of the solar system at the beginning of its formation, which led to the formation of the solar system. Newton called this push the "first push of God" or called the "hand of God", Newton firmly believed in the existence of the "hand of God", and thus slipped into the study of theology in his later years, it is a pity.

Usually the magnetic force between wires. The physicist Ampere found that the energized wire will generate a magnetic field in the space around it, and the magnetic field direction generated by the different current direction is not the same, and the magnetic field generated by the energized wire can be determined by the right hand rule. If two energized wires are close enough, the magnetic fields formed by the two energized wires will influence each other: two parallel wires with current in the same direction will attract each other, and two parallel wires with current in opposite directions will repel each other. If the two parallel wires are not energized (there is no current inside), they will not affect each other. This discovery has implications for our study of atomic systems.

Assuming that the nucleus and the electron are at a certain distance apart and at rest with each other at the beginning, they will rapidly approach each other under the action of electrostatic acceleration, and the nucleus and the electron moving in opposite directions are equivalent to two parallel wires passing through the same direction of the current, they will have a magnetic effect and attract each other, and the greater the relative speed of the nucleus and the electron, the greater the magnetic effect. Thus: under the action of electrostatic gravity, the nucleus and the electron are close to each other, and under the action of magnetic force, the nucleus and the electron begin to rotate around each other, and eventually the nucleus and the electron are close to each other along the helix and form a stable atomic system in which the electron rotates around the nucleus. Here we see that because the magnetic force between the nucleus and the electron provides the initial velocity of the electron's rotation around the nucleus, the electrostatic force between the electron and the nucleus will attract them together in a straight line, and the magnetic force between the electron and the nucleus will rotate them around each other and eventually form the atomic system. Since the charge-mass ratio of the macroscopic charged particles is much smaller than that of the electron and the nucleus (how many orders of magnitude smaller can be calculated by interested friends), the speed of the macroscopic charged particles moving towards each other under the action of electrostatic force is very small, and the resulting magnetic force is insignificant enough to affect the motion of the macroscopic charged particles. So normally, macroscopic charged particles are attracted to each other in straight lines.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card