Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Hydrogen fuel cells: An overdue energy change

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 956 次浏览: | Share:

The electrolyte system focuses on shifting batteries from liquid to solid, a technology that balances battery energy density and safety, and is one of the most popular solutions for new car makers. In January this year, NIO released a concept car equipped with a "solid-state battery" with a driving range of nearly 1000km. Unfortunately, solid-state batteries are still a very immature technology, and the application scope is limited to concept cars.

The packaging scheme is the last link that can be optimized for lithium batteries, and there is only one battery enterprise to optimize the packaging scheme so far: install more batteries in a safer way.

Byd's blade battery solution is a typical representative, optimizing the battery pack design as much as possible through the blade type package to improve the energy density of the battery pack. But the amount of space that packaging technology can squeeze is very limited, and it needs to be combined with better battery management to make it work.

Third, "hydrogen" can be solved

The battery life bottleneck of lithium batteries has made the call for hydrogen fuel cells in the long-life market high, because the "power" and "energy density" problems faced by lithium batteries are not problems for hydrogen fuel cells. It combines the three characteristics of "extremely high energy density, infinite possible system capacity, and no charging."

The energy density of hydrogen is incomparable to traditional fuels: the caloric value of hydrogen is about 3 times that of petroleum and 4.5 times that of coal, and every 1kg of hydrogen is equivalent to 2.5kg of natural gas, 2.8kg of gasoline, and 33.70kWh of electricity (1kWh is commonly known as 1 KWH of electricity) [2].

At present, the energy density of lithium batteries can reach up to 300Wh/Kg, lithium iron phosphate is less than 200Wh/Kg, and the energy density of hydrogen fuel cell systems exceeds 350wh/kg, easily surpassing lithium batteries. At this stage, the hydrogen storage technology is not mature enough, the amount of hydrogen carried by the cylinder is not enough, and the energy is still significantly ahead of the lithium battery. With the optimization and upgrading of pressurization technology, the energy density of the latter is beyond the reach of lithium batteries.

Lithium is already the lightest metal element on Earth, but it's still too heavy for hydrogen, the first element on the periodic table. Although hydrogen can not be stored in liquid form, and the reactor and auxiliary system will have a certain weight, in any case, the energy contained in a unit volume of hydrogen fuel is far more than other batteries, that is, the energy density is high. Therefore, the current limit of lithium battery vehicles is difficult to break through 500km, while the range of hydrogen fuel cell vehicles can easily start from 500km.

In terms of system capacity, similar properties to engines allow hydrogen fuel cells to have unlimited capacity possibilities. In the process of hydrogen fuel cell power generation, hydrogen will continue to flow from the hydrogen tank into the battery system, and the regeneration of water is constantly discharged. In the case of the same size of the battery system, as long as the hydrogen storage container is large enough and the hydrogen can be loaded enough, the system capacity of hydrogen fuel cells can continue to expand.

In terms of charging, because hydrogen fuel cells do not need to store electricity in the battery, they do not need to be charged. Its charging principle is more like a traditional fuel vehicle, 3 minutes to 5 minutes full of hydrogen fuel, a single driving distance can reach 400 kilometers to 700 kilometers. In addition, another major advantage of hydrogen fuel cells is that there are no mechanical transmission parts, and no noise is generated during the entire power generation process.

Hydrogen fuel cells also have the right time and the right place: Hydrogen makes up 90 percent of the universe and can be regenerated indefinitely as long as the sun keeps rising.

China is the world's largest hydrogen production and consumption market, with industrial hydrogen production capacity reaching 25 million tons/year in 2019 [3]. The annual hydrogen released by the chlor-alkali industry in the form of sky lanterns alone is enough to drive 12.4 million vehicles; the annual use of hydropower to produce hydrogen in Sichuan Province can meet 2.75 million hydrogen fuel cell vehicles; in 2017, the abandoned electricity of wind power and photovoltaic can be used by more than 20 million hydrogen energy vehicles 。

China holds the key to the scale of the trillion hydrogen energy market, which is a fertile soil that has not yet been developed in the eyes of the giant, and for small and medium-sized enterprises, it is also a soil that can grow into a leading enterprise.

4. Still filling in

However, since Toyota launched the world's first commercial hydrogen fuel cell vehicle in 2014, when hydrogen fuel cell vehicles in Europe, the United States, Japan and South Korea went hand in hand in the commercial field, China's hydrogen fuel cell vehicle market has entered the exploration stage.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card