Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Hydrogen fuel cells: An overdue energy change

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 954 次浏览: | Share:

Every "decarbonization" of energy will change the development process of human civilization, and every energy conversion is accompanied by the revival or rise of a major country.

The Industrial Revolution began in Britain in the 19th century, when the switch from wood to coal led to the rise of an empire on which the sun never set. In the 20th century, the substitution of oil and gas for coal opened the prelude to the electric age, during which the United States became the world's first industrial power and economy, laying the groundwork for world domination. The new energy revolution in the 21st century is unstoppable, and China also has the opportunity to catch up with photovoltaic and new energy vehicles.

But the battle for new energy is far from over. "Carbon neutrality" has triggered a new round of energy and material revolution, which has become one of the few big opportunities for overtaking at this stage. A new energy promotion competition around carbon neutrality has begun. China proposed "carbon peak by 2030, carbon neutrality by 2060" at the United Nations General Assembly, Europe plans to write "carbon neutrality by 2050" into the bill, and the United States has returned to the Paris Agreement since the first day Biden took office, promising to "make the United States carbon neutral by 2050."

This new energy revolution in China has been going for decades, and now every step is clearly connected: from vigorously developing photovoltaic to building UHV networks, and then to supporting new energy vehicles, an energy blueprint is displayed in front of us. However, when stitching this energy map, two potential problems are gradually exposed: one is a large number of renewable energy abandonment, and the other is the difficult endurance problem of new energy vehicles.

As a result, "hydrogen" can once again be placed in high hopes. At the recent China Development Forum, Xue Qikun, president of Southern University of Science and Technology and academician of the Chinese Academy of Sciences, said: "According to the physical laws of thermodynamics, any energy use process will cause waste and pollution such as carbon dioxide. Therefore, we still need to return to our original intention, starting from the most basic Einstein's nuclear fusion, returning to the sun, and using hydrogen, the simplest element in the human universe on Earth, to develop the cleanest, most efficient and longest term solar photovoltaic hydrogen energy technology."

The first year of China's hydrogen energy industry is actually earlier in 2019. The commercialization of hydrogen energy has always been controversial. In the eyes of proponents, hydrogen fuel cells have more than 100 times the energy density of lithium batteries, and when burned, nothing is left but water; In the opposition camp, Musk has assured investors that "fuel cells have no future," and Volkswagen Group CEO Herbert Diess has told the media: You will not see any passenger cars powered by hydrogen.

But hydrogen isn't all bad. Even in the field of passenger car applications where the voice is concentrated, hydrogen fuel cells can avoid the direct confrontation with lithium batteries, choose to break through in the long-life and high-power markets, and become a fuel alternative for commercial vehicles such as logistics, heavy trucks, and buses. In addition, in other applications such as fixed power supplies and drones, the advantages of hydrogen fuel cells are unmatched. In fact, in the voice of doubt, hydrogen energy is still cutting into the new energy industry chain by absorbing and rejecting electricity and extending the life of lithium batteries, while actively exploring the new energy world outside the grid.

But how easy is it to build an energy network from scratch? The hydrogen energy industry chain is longer, more complex and more expensive than the lithium battery industry chain, making it difficult to be applied on a large scale so far. The construction of the hydrogen network is bound to be a protracted battle. Fortunately, there are currently two powerful forces that are promoting the formation and expansion of the industrial chain from two directions: in the upstream, macro policies are guiding hydrogen energy; Downstream, governments and enterprises are working together to explore application scenarios.

Today, the development pattern of "electric-lithium batteries" has been clear, and the prospect of "hydrogen-hydrogen fuel cells" is still unclear. At this stage, becoming the "substitute" role of the power grid and lithium batteries is the direction that hydrogen can clearly go. But in the greater unknown fields of application, what kind of pattern will hydrogen energy have in the future? It takes a lot of imagination.

First, big opportunities for carbon reduction

In 2019, "hydrogen energy" was written into the Chinese government work report for the first time, and the report proposed to "promote the construction of charging, hydrogenation and other facilities."

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card