Hydrogen fuel cell technology, which was conceived in the oil crisis of the 1970s, has found a breakthrough in the application of automobiles.
In 1994, Daimler launched the first generation of modern fuel cell passenger car -NECAR 1, although in 2020 Daimler terminated the relevant program, but its fuel cell car achieved a breakthrough from 0 to 1.
In the ensuing long decade or so, other countries are also stepping up tests and racing against time to seize the milestone of the commercialization of hydrogen fuel cell vehicles.
In 2014, an important milestone in the history of hydrogen fuel cell vehicle development was born in Japan. In December 2014, Toyota launched the Miria, the world's first commercial hydrogen fuel cell vehicle. The milestone is that hydrogen fuel cell vehicles are part of the solution to revolutionizing transportation technology, not just a concept that exists in a lab.
At the same time, hydrogen fuel cell vehicles in various countries began to come out of the laboratory and began their respective commercial landing practices. The United States has locked in the logistics and transportation field, and as of 2015, a total of 34 enterprises and more than 8,000 hydrogen fuel cell forklifts have been put into operation; South Korea and Japan are focusing on the passenger car market, with Hyundai TucsonFCEV and Toyota Mirai also launching related products.
In the meantime, China has chosen another path, which is to conduct small-scale tests in the demonstration phase before commercialization. In this context, the world's largest fuel cell vehicle demonstration operation project appeared in the 2008 Beijing Olympic Games and 2010 Shanghai World Expo: 100 hydrogen fuel cell sightseeing vehicles received a total of 2,230,475 tourists, with a total operating mileage of 578,655km 。
The different layout of hydrogen energy in various countries largely depends on their different energy structures.
Japan is currently the most active country in building a hydrogen network. Limited by its geographical location and energy environment, as well as the nuclear energy strategy caused by the nuclear accident, Japan now wants to bet on hydrogen to achieve a renewable energy strategy. As early as 2014, Japan developed a strategic roadmap for the production, storage, transportation and application of hydrogen, and today hydrogen energy has been established as Japan's "national energy".
For the United States, there is a greater need to develop renewable energy to prevent oil shocks. Since the 1970s, the U.S. government has funded a lot of hydrogen research. In 1990, the United States formulated a five-year plan for the development of hydrogen energy. At present, the United States hydrogen energy related policies cover almost the entire hydrogen energy industry chain.
China has chosen a multi-point strategy on the renewable energy track. Hydrogen energy is not the only renewable energy that is concerned, and the development of hydrogen fuel cell vehicles is also lithium battery vehicles.
The strength of photovoltaic and UHV fields makes electric vehicles stand out before hydrogen fuel cell vehicles. With the "ten cities thousand vehicles" in 2009 as a starting point, the development of electric vehicles has entered the embryonic stage, and hydrogen fuel cell vehicles and pure electric vehicles are included in the subsidy policy; In 2014, electric vehicles entered the growth period, hydrogen fuel cell vehicles also set a "thousand level" scale of the target, in the following years, the annual sales of electric vehicles from 180,000 all the way through 1 million; In contrast, the cumulative sales of hydrogen fuel cell vehicles have not even reached 10,000 units.
In the past decade or so, hydrogen fuel cell vehicles have not been able to get rid of the "replacement" role of electric vehicles. Whenever the progress of lithium battery technology slows down, fuel cell technology appears on the market. Today, the battery life of electric vehicles has hit the ceiling, and the development of hydrogen fuel cell vehicles has been put on the agenda, but unlike in the past, fuel cell technology has gradually passed from the demonstration stage to the commercialization stage, and has the ability to take over some of the lithium battery market segments.
Fifth, the cost dilemma
From the bench to the race, hydrogen energy will not go smoothly.
Part of the controversy stems from the slow growth of hydrogen fuel cells. The reason behind this is that developing hydrogen energy is a long and complex chain. Diess has explained on its social media that it is not entering the hydrogen car market because hydrogen is very expensive and inefficient, so it cannot ensure the rapid development of infrastructure and ensure the stability of hydrogen during transportation.
The development of hydrogen fuel cell vehicles needs to discuss not only a driving car, but also a complex energy system from hydrogen production - transportation - hydrogen refueling station - hydrogen fuel cell vehicles superimposed.
From the perspective of the market, the complex issues surrounding hydrogen fuel cells can also be simply summarized as two questions: whether it is easy to use and whether it is cheap. Its excellent battery life has proved that hydrogen fuel cells are good enough to use. But the second question, "is it cheap?" still needs further exploration.
email:1583694102@qq.com
wang@kongjiangauto.com