Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Electrons can "fission" and release photons to obtain recoil

来源: | 作者:佚名 | 发布时间 :2023-12-02 | 418 次浏览: | Share:

Why electrons don't fall into the nucleus. So why don't electrons fall into the nucleus under electrostatic and magnetic forces? We know that nuclei and electrons at a certain distance will be close to each other along the helix under the action of electrostatic and magnetic forces, and the electrons will be deformed under the strong tearing action of the electrostatic attraction of the nucleus; When the distance between the electron and the nucleus is close enough, the electron will inevitably "fission" and release photons to obtain recoil and further increase the speed of the electron around the nucleus. At this time, due to the increase in the speed of the electron around the nucleus, the centrifugal trend will also increase, so the electron will move farther away from the nucleus, so the electron will not fall into the nucleus. When an electron in a stable orbit is disturbed by the external disturbance directed at the nucleus, for example, when we apply high pressure to a substance, it will inevitably force the electron to move close to the nucleus. At this time, the electron will be torn by more electrostatic force because it is closer to the nucleus. In order to "save the car", the electron will continue to fission and release photons to obtain recoil, thus increasing the speed of the electron moving around the nucleus. To continue to counter the electrostatic pull of the nucleus. In the macroscopic world, even if one charged particle is artificially spun around another charged particle at high speed to form an atomic-like system (although this is difficult to do), the atomic-like system formed by the macroscopic charged particle is very fragile, and the atomic-like system will fall apart whether the particle is subjected to the disturbance of the nucleus or the disturbance of the near nucleus. The main reason is that the mass of macroscopic charged particles does not change, and they do not change their mass to maintain the equilibrium of atom-like systems. Here we have to admire the wonder of the material world, a small atomic system in the microscopic world is much more advanced and stable than the atom-like system we force to form with macroscopic charged particles.

The movement of electrons in the nucleus. Let an electron with a mass of M rotate stably around the nucleus in an orbit with a distance of R from the nucleus (at this time, the electron must be in a "magic number" peak position with a large internal binding force), at this time, the "tearing action" of the nucleus's electrostatic gravity must be less than the internal binding force of the electron, and this balance will be maintained if it is not disturbed by the outside world. Under normal circumstances, electrons are always subject to external disturbances (such as collisions between atoms, collisions between photons and electrons, etc.). If an electron is impacted by a photon of mass m pointing to the nucleus at a certain moment, because the electron is always in a "hungry state" under the electrostatic gravity of the nucleus. Therefore, at the moment of the encounter between the photon and the electron, the electron will absorb the photon and increase its mass and move towards the nucleus. Assuming that the distance of the electron moving towards the nucleus is r, then the distance from the electron to the nucleus (the radius of the electron around the nucleus) is R-R, and the internal binding force of the electron mass is M+ m, due to the increase of the electron mass, will inevitably decrease rapidly. The reduction of the distance between the electron and the nucleus will inevitably lead to the rapid increase of the tearing effect of the electrostatic attraction of the nucleus on the electron. If the internal binding force of the electron is less than the tearing effect of the electrostatic attraction of the nucleus on the electron, the electron will quickly "fission" to release a mass m photon and get a recoil back to the original orbit farther from the nucleus. It has been suggested that an electron with a mass of M+ m does not give off photons of other masses after fission. This is because electrons in the mass interval of M+ m and M-m, there is only a maximum binding energy - the corresponding mass is M, in other words, only the internal binding force of the mass of m is large enough to resist the electrostatic gravitational tearing of the nucleus, and other masses of electrons are unstable.

If at some point the electron is disturbed by a photon of mass m moving away from the nucleus, since the electron is in a "hungry state", the electron will absorb the photon and increase its mass and move away from the nucleus at the moment the photon meets the electron. Assuming that the furthest distance of the electron from the nucleus is R+r and the mass of the electron is M+m, since the original electron is at the peak of the "magic number of mass" with the greatest internal binding force, the internal binding force will inevitably decrease rapidly after the absorption of the photon, and the increase of the distance of the electron from the nucleus will lead to the reduction of the electrostatic attraction of the nucleus on the electron. If an electron with a mass of M+m is located at another peak position where the internal binding force is larger, if the tearing effect of the nucleus's electrostatic attraction on the electron is less than the internal binding force, the electron will stabilize in a new orbit R+r away from the nucleus, and the electron will transition after being excited. If the mass of M+m electron is not located in the peak position of the internal binding force is large, then the internal binding force of the new mass of M+m electron will be much less than that of the original mass of M electron. If the tearing effect of the electrostatic attraction of the nucleus on the electron is greater than the internal binding force of the electron, the electron will also release the mass of m photon and return to the original orbit.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board