Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Electrons can "fission" and release photons to obtain recoil

来源: | 作者:佚名 | 发布时间 :2023-12-02 | 759 次浏览: | Share:

Why electrons don't fall into the nucleus. So why don't electrons fall into the nucleus under electrostatic and magnetic forces? We know that nuclei and electrons at a certain distance will be close to each other along the helix under the action of electrostatic and magnetic forces, and the electrons will be deformed under the strong tearing action of the electrostatic attraction of the nucleus; When the distance between the electron and the nucleus is close enough, the electron will inevitably "fission" and release photons to obtain recoil and further increase the speed of the electron around the nucleus. At this time, due to the increase in the speed of the electron around the nucleus, the centrifugal trend will also increase, so the electron will move farther away from the nucleus, so the electron will not fall into the nucleus. When an electron in a stable orbit is disturbed by the external disturbance directed at the nucleus, for example, when we apply high pressure to a substance, it will inevitably force the electron to move close to the nucleus. At this time, the electron will be torn by more electrostatic force because it is closer to the nucleus. In order to "save the car", the electron will continue to fission and release photons to obtain recoil, thus increasing the speed of the electron moving around the nucleus. To continue to counter the electrostatic pull of the nucleus. In the macroscopic world, even if one charged particle is artificially spun around another charged particle at high speed to form an atomic-like system (although this is difficult to do), the atomic-like system formed by the macroscopic charged particle is very fragile, and the atomic-like system will fall apart whether the particle is subjected to the disturbance of the nucleus or the disturbance of the near nucleus. The main reason is that the mass of macroscopic charged particles does not change, and they do not change their mass to maintain the equilibrium of atom-like systems. Here we have to admire the wonder of the material world, a small atomic system in the microscopic world is much more advanced and stable than the atom-like system we force to form with macroscopic charged particles.

The movement of electrons in the nucleus. Let an electron with a mass of M rotate stably around the nucleus in an orbit with a distance of R from the nucleus (at this time, the electron must be in a "magic number" peak position with a large internal binding force), at this time, the "tearing action" of the nucleus's electrostatic gravity must be less than the internal binding force of the electron, and this balance will be maintained if it is not disturbed by the outside world. Under normal circumstances, electrons are always subject to external disturbances (such as collisions between atoms, collisions between photons and electrons, etc.). If an electron is impacted by a photon of mass m pointing to the nucleus at a certain moment, because the electron is always in a "hungry state" under the electrostatic gravity of the nucleus. Therefore, at the moment of the encounter between the photon and the electron, the electron will absorb the photon and increase its mass and move towards the nucleus. Assuming that the distance of the electron moving towards the nucleus is r, then the distance from the electron to the nucleus (the radius of the electron around the nucleus) is R-R, and the internal binding force of the electron mass is M+ m, due to the increase of the electron mass, will inevitably decrease rapidly. The reduction of the distance between the electron and the nucleus will inevitably lead to the rapid increase of the tearing effect of the electrostatic attraction of the nucleus on the electron. If the internal binding force of the electron is less than the tearing effect of the electrostatic attraction of the nucleus on the electron, the electron will quickly "fission" to release a mass m photon and get a recoil back to the original orbit farther from the nucleus. It has been suggested that an electron with a mass of M+ m does not give off photons of other masses after fission. This is because electrons in the mass interval of M+ m and M-m, there is only a maximum binding energy - the corresponding mass is M, in other words, only the internal binding force of the mass of m is large enough to resist the electrostatic gravitational tearing of the nucleus, and other masses of electrons are unstable.

If at some point the electron is disturbed by a photon of mass m moving away from the nucleus, since the electron is in a "hungry state", the electron will absorb the photon and increase its mass and move away from the nucleus at the moment the photon meets the electron. Assuming that the furthest distance of the electron from the nucleus is R+r and the mass of the electron is M+m, since the original electron is at the peak of the "magic number of mass" with the greatest internal binding force, the internal binding force will inevitably decrease rapidly after the absorption of the photon, and the increase of the distance of the electron from the nucleus will lead to the reduction of the electrostatic attraction of the nucleus on the electron. If an electron with a mass of M+m is located at another peak position where the internal binding force is larger, if the tearing effect of the nucleus's electrostatic attraction on the electron is less than the internal binding force, the electron will stabilize in a new orbit R+r away from the nucleus, and the electron will transition after being excited. If the mass of M+m electron is not located in the peak position of the internal binding force is large, then the internal binding force of the new mass of M+m electron will be much less than that of the original mass of M electron. If the tearing effect of the electrostatic attraction of the nucleus on the electron is greater than the internal binding force of the electron, the electron will also release the mass of m photon and return to the original orbit.

  • ABB 1TGE120010R1300 Industrial Control Module
  • ABB 216BM61b HESG448267R1021 Advanced Process Control Module
  • ABB BDD110 HNLP205879R1 Digital I/O Module
  • ABB IEMPU02 Power Supply Module
  • ABB G3FE HENF452697R1 High performance control module
  • ABB G3FD HENF452692R1 High-Performance Industrial Control Module
  • ABB B5EC HENF105077R1 Electronic Motor Protection Relay
  • ABB G3EFa HENF450295R2 Industrial Automation Module
  • ABB B5EEd HENF105082R4 Electronic Motor Protection Relay
  • ABB O3EId HENF452777R3 Digital Output Module
  • ABB NWX511a-2/R HESG112548R12 Industrial Automation Module
  • ABB E3ES Power communication module
  • ABB O3EX HENF315845R2 Industrial Control Module
  • ABB O3EHa HENF315087R2 Digital Output Module
  • ABB E3ED High-Performance Industrial Controller
  • ABB O3EGb HENF315118R2 Digital Output Module
  • ABB O3ED Digital Input Module
  • ABB O3ES HENF445789R1 Digital Input Module
  • ABB G3ESa HENF318736R1 control module
  • ABB 8025-235 Industrial Control Module
  • ABB 216NG61A HESG441633R1 HESG216875/K main control board
  • ABB SCYC51020 58052582G programmable Logic Controller
  • ABB RED670 Line differential protection
  • ABB PP825A 3BSE042240R3 Touch Screen Panel
  • ABB SCYC51020 58052582/G pulse trigger board
  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board
  • ABB MC91 HESG440588R4 HESG112714/B Wireless Router Modules
  • ABB PPD113-B03-23-111615 Excitation system controller
  • ABB AB91-1 HESG437479R1 HESG437899 Graphics Expansion Module
  • ABB IT94-3 HESG440310R2 HESG112699/B controller
  • ABB NF93A-2 HESG440280R2 HESG323662R1/HESG216665/K Module Controller
  • ABB IW93-2 HESG440356R1 HESG216678/B I/O module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB RB520 Dummy Module For Submodule Slot
  • ABB SR511 3BSE000863R1 SR511 Regulator 24V/5V
  • ABB DSDP140B 57160001-ACX Counter Board