Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

ABB SPAD 346 C3 Differential Protection

来源: | 作者:FAN | 发布时间 :2025-06-20 | 208 次浏览: | Share:

ABB SPAD 346 C3 Differential Protection

Scope and Introduction

Document purpose: To introduce the differential protection setting calculation of SPAD 346 C3 protection relay module SPCD 3D53, which is applicable to two winding power transformers and involves differential protection of three winding power transformers, motors, generators, etc., including setting suggestions and discussion of intermediate current transformer (CT) requirements.

Protection principle: By comparing the phase currents on both sides of the protected object, when the differential current of a certain phase current exceeds the starting value of the stable action characteristic or the instantaneous protection stage value, the relay sends an action signal, which has the characteristics of fast action speed, high stability of faults outside the area, and high sensitivity to faults inside the area. CT selection and relay setting should be cautious.

Abb Differential Block DDA 202 63A 2P Type B 30mA B261092

Two winding power transformer protection

(1) Vector Group Matching (SGF1)

By using SGF1/1... 8 switches, the vector groups of power transformers are numerically matched on the high voltage (HV) and low voltage (LV) sides. Based on the phase shift and delta connection inside the relay, there is no need for intermediate CT, and the zero sequence component in the phase current can be automatically eliminated. Different vector groups correspond to different switch positions and check sums.

(2) CT ratio correction (I ₁/In, I ₂/In)

When the CT secondary current is different from the rated current under the rated load of the power transformer, the CT ratio on both sides of the transformer needs to be corrected. Calculate the rated load of the power transformer firstI nT=S n/(3 × U n), then calculate the transformation ratio correction settings I 1/In=I nT/I p (HV side) and I 2/In=I T/I p (LV side), where I p Rated primary current for CT, and the rated input current (1A or 5A) on the HV and LV sides of the relay can be different, using 1A secondary current can improve CT performance.

(3) Startup ratio (S)

Due to the inaccuracy of CT and changes in the position of the tap changer, an increase in load current will cause differential current to increase by the same percentage. The setting of the start-up ratio (S) affects the slope of the relay action characteristics between the first (fixed 0.5 × In) and second turning point (set I 2tp), which is calculated as the sum of CT accuracy on both sides, tap changer adjustment range, relay action accuracy (4%), and required margin (usually 5%).

(4) Basic Startup Settings (P/In)

The basic setting (P) defines the minimum sensitivity of protection, taking into account the no-load current of power transformers, which is generally calculated asP=0.5 × S+P, where P 'represents the no-load loss of the transformer at maximum voltage, usually used when the actual value is unknown

P ′=10%。

(5) Second turning point (I ₂ tp/In)

The second turning point defines the point at which the influence of the activation ratio S in the action characteristics ends and the slope begins at 100%. Its setting needs to balance stability and sensitivity. In power transformer protection applications, the range of 1.5-2 is usually selected, with 1.5 being more stable for out of zone faults and 2.0 being more sensitive for in zone faults.

(6) Second harmonic blocking (Id2f/Id1f>)

The excitation inrush current of power transformers during excitation contains a large amount of second harmonic. Differential protection is locked by detecting the content of second harmonic (low setting stage). The recommended setting for second harmonic locking in power transformer protection is 15%, which can be enabled by setting the switch SGF2/1=1, and the setting can be reduced to 10% during the first excitation.

(7) Instantaneous differential current stage (Id/In>>)

It is recommended to use it together with the low setting stage to provide faster protection in case of severe faults, and is not subject to harmonic blocking. Its setting needs to be high enough to prevent the differential relay module from tripping when the transformer is excited, usually 6-10.

(8) Fifth harmonic blocking and unlocking (Id5f/Id1f>, Id5f/Id1f>>)

Used to lock the relay action when there is a sudden voltage rise (or frequency drop), based on the fifth harmonic component of the transformer excitation current to monitor overexcitation. Due to the need to know the magnetization characteristics of the transformer, it is usually not enabled, that is, SGF2/3 and SGF2/4 are set to 0.

(9) Interference recorder

The internal interference recording function of the relay module is a powerful tool for analyzing the causes of transformer inrush current and tripping. The factory default settings are used during normal operation, and the serial communication parameters V241 and V245 need to be changed during inrush current research.


Three winding power transformer protection

The SPAD 346 C relay can be used for three winding transformers or two winding transformers with two output feeders. On the dual feeder side of the transformer, the two CT currents of each phase must be summed through parallel connections, usually requiring an intermediate CT to handle vector group and/or ratio mismatches, and at least 75% of the short-circuit power should be fed from the transformer side with only one connection to the relay, otherwise it may cause unstable protection.


Motor and generator protection

The calculation process for setting up differential protection applications for motors or generators is very similar to that of power transformers, but the vector group should be set to Yy0. The starting ratio (S) is calculated as the sum of the CT accuracy on both sides, the relay action accuracy (4%), and the required margin (usually 2.5-5%). The second turning point (I ₂ tp/In) may cause CT saturation due to current during motor start-up, with a typical setting value of 1.0. The generator is usually between 1.0-1.5, and the motor and generator usually do not require second or fifth harmonic blocking.


Combination protection of motor and autotransformer

The differential relay measures the phase current on both sides of the protected object, and the protection area includes the autotransformer and motor. The current between all autotransformer/motor combinations and the network must be measured, and its setting is the same as that of ordinary motor protection applications. The autotransformer will have a typical starting sequence during the motor starting process, from power supply to acting as a parallel reactor and then to bypass.


Variable frequency motor and its power transformer protection

SPAD 346 C can only be used to protect power transformers that supply power to frequency converters, and is not suitable for protecting power transformers or motors powered by frequency converters, as the fundamental frequency component in the relay is numerically filtered through a Fourier filter and is not suitable for measuring the output of frequency converters.


Short overhead or cable protection

SPAD 346 C can be used for differential protection of overhead or cable lines. When the distance between measurement points is long, an intermediate CT may be required to reduce CT load. Using 1A secondary current can reduce CT load, and the actual accuracy limit factor (Fa) of CT can be calculated to ensure compliance with requirements.


Summary

This guide describes how to select and calculate differential protection settings for SPAD 346 C protection relays, introduces the working principle and setting effect of relays, and presents the calculation process through examples. It also describes protection application examples for three winding power transformers, motors, and generators, discusses the applicability of SPAD 346 C relays in frequency converter applications, and finally describes differential protection for short overhead or cable lines through examples of calculating the actual accuracy limit factor of intermediate CT.

Stabilized differential relay SPAD 346 - Protection and control ...

  • Kollmorgen Seidel 65WKS-CE310/6PB - Servo Drive Control
  • Kollmorgen U9M4T - Servodisc DC Motor, With Harmonic Drive Transmission
  • KOLLMORGEN TT-2952-1010-B - INLAND BRUSH SERVO MOTOR WITH TACH
  • ONE VF-RA2474N-5/10/12/15 - Servo Drive Power Cable
  • Kollmorgen S30601-NA - Servostar 346 + EtherCat
  • Kollmorgen HDIL100P1 - Direct Drive Linear Hall Effect Assembly
  • Kollmorgen TT-4239-1010-AA - DC Servo Motor 875 RPM
  • PMI Kollmorgen 00-00907-999 - ServoDisc DC Motor 0.5" Diameter Shaft
  • INLAND KOLLMORGEN TT-2952-1010-B - MOTOR (USES RESOLVER)
  • KOLLMORGEN CTI-187-2 - BRUSHLESS MOTOR DANAHER MOTION
  • Kollmorgen 12-0857 - Lead Screw Electric Cylinder without Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • kollmorgen 6sm, 10m - Cable
  • KOLLMORGEN ME2-207-C-94-250 - GOLDLINE SERVOMOTOR-ENCODER COMMUTATED
  • Kollmorgen MT308A1-R1C1 - GoldLine Motor
  • Kollmorgen 73 & 54 cm Travel - Ironless Linear Motors on THK Rail
  • Kollmorgen AKM53H-ACCNR-00 - Servo Motor
  • Kollmorgen PA5000 - Power Supply
  • KOLLMORGEN D082M-12-1310 - GOLDLINE DDR DIRECT DRIVE ROTARY MOTOR 230Vrms 300 RPM
  • Kollmorgen RBEH-01210-A14 - Brushless Motor, Heidenhain D-83301
  • KOLLMORGEN Servotronix PRD-CC18551H-11 - Servo Board
  • Kollmorgen DH083M-13-1310 - Ho Direct Drive Rotary. Max Speed: 400/500 RPM
  • KOLLMORGEN BMHR-4.8XX - INLAND MOTOR
  • Kollmorgen Seidel 84421 - Motor Cable 20 Metre 6SM 27/37 AKM DBL Engines
  • Kollmorgen AKD1207-NBCC-0000 - Drive
  • HP Indigo / Kollmorgen VLM32H-ALNR-00 - Motor
  • SUPERIOR ELECTRIC / KOLLMORGEN GM05009005 - POWERSTAT 50 AMP VARIAC w/ PMI MOTOR
  • Kollmorgen CM12A1-015-033-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • Kollmorgen U9M2 - DC Motor
  • Kollmorgen AKM11C-ANMN2-00 - 3-Phase PM Servo Motor 110W
  • Kollmorgen 60-023168-000 - MOTOR GEARBOX ASSEMBLY SERVODISC DC NO REAR SHAFT
  • Kollmorgen AS10300 - servo drive servo star Cincinnati
  • Kollmorgen AKM23D-EFC2C-00 - Servo Motor AKD Drive
  • KOLLMORGEN E33HRFB-LNK-NS-01 - STEPPER MOTOR 2.7AMP 251W 1500RPM 170V
  • Kollmorgen AKM21G-ENM2DB00 - Servomotor
  • KOLLMORGEN SERVO STAR 620-AS - 230-480V 20A Servo Drive
  • Kollmorgen CFE0A1-002-006-00 - Encoder Cable 6.00m
  • KOLLMORGEN AKM21C-ANM2DBOO - PM SERVOMOTOR
  • Kollmorgen 03200-2G205A - ServoStar Servo Drive
  • Kollmorgen CR10251 - SERVOSTAR CD AC Servo Driver
  • Kollmorgen VF-DA0474N-03-0 - 10 Ft Feedback Cable
  • KOLLMORGEN AKM21S-ANMNR-03 - Servo Motor
  • Danaher Motion Kollmorgen S403AM-SE - Servostar 443M-S Servo Drive
  • Kollmorgen Seidel digifas 7204 - Servo Amplifier Digital
  • Kollmorgen Industrial Drive B-406-B-A1-B3 - Goldline Brushless Servomotor
  • Danaher Motion S20630-CNS - Servo Kollmorgen S200 Series
  • KOLLMORGEN B-206-A-31-B3 - GOLDLINE BRUSHLESS PM SERVO MOTOR 1400RPM
  • Kollmorgen Seidel SR6-6SMx7 - 4m Cable
  • Cincinnati Milacron Kollmorgen Vickers PSR4/5-250-7500 - Power Supply
  • Kollmorgen AKM 13C-ANCNR-00 - Gripper Handling with Neugart PLE 40 gears
  • Kollmorgen SERVOSTAR 403 A-P - 3a servo drive
  • KOLLMORGEN S6M4H - INDEXER ASSY SERVO MOTOR
  • SERVOMOTOR KOLLMORGEN SEIDEL 6SM 57M-3.000-G-09 - Servo Motor
  • Kollmorgen VP-507BEAN-03 - Valueline AKD 10 Ft Power Cable
  • KOLLMORGEN 28454 - SERVO DRIVE, SERVOSTAR 300 SERVOSTAR 310
  • KOLLMORGEN TT-4205-4017-C - INDUSTRIAL DRIVE DC MOTOR
  • Kollmorgen T150551 - Servostar 343 Control Drive
  • Kollmorgen ICD05030A1C1 - Platinum DDL Direct Drive Linear Motor w/ 30" Rail Way
  • Kollmorgen SERVOSTAR 303 S30361-SE - Servo Drive
  • Kollmorgen 00-00907-002 - ServoDisc DC Motor Varian Semiconductor 3500054
  • Kollmorgen CM12A1-025-005-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • KOLLMORGEN MOTION TECH IL18100A3TRC1 - BRUSHLESS LINEAR MOTOR PLATINUM DDL
  • Kollmorgen SERVOSTAR 406 M-C - Servo Drive FW: 7.36
  • Kollmorgen IC11030A1P1103 - platinum direct drive linear motor
  • W&T 10/100BaseT - Com Server Highspeed 3×RS232/RS422/RS485
  • Kollmorgen S30361-NA - drive brand
  • Kollmorgen Industrial Drives PSR3-208/50-01-003 - Power Supply
  • Kollmorgen RBE-03011-A00 - Brushless Frameless Servo Motor, OD: 5-5/64"/129mm
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Kollmorgen IC44030A2P1 - LINEAR DRIVE MOTOR
  • KOLLMORGEN AKM22E-ANS2R-02 - servo motor + Micron X-TRUE 60
  • Kollmorgen 18442-01B - Pendant (E2)
  • Kollmorgen AKD-P00306-NBEC-0069 - Drive
  • Kollmorgen AKM53H-ACCNR-00 - Servomoteur
  • Kollmorgen AKD-P01207-NACN-0056 - Servo Drive
  • Kollmorgen SERVOSTAR 403a-c - Servo Drive
  • Kollmorgen B-204-B-39-016 - Servo Motor
  • Giddings & Lewis Dahaner Motion Kollmorgen M.1017.3140 R3 - Output Module
  • Kollmorgen KNSG300 - Emergency Light Unit
  • KOLLMORGEN 62-0050 Model T31V-EM-C0 - Servo Motor Shaft Size 3/8" Dia 1-1/4" Long
  • Kollmorgen S30601-NA-ARM9 - SERVOSTAR346 Controller w/o Fan As Is
  • Kollmorgen PMI Motors 00-00903-010 - ServoDisc DC Motor Type U9M4H 1/2" shafts
  • Kollmorgen PMI Motion U12M4 - Servo Disc DC Motor Universal Instruments 11467000
  • Kollmorgen AKM53H-accnr-00 - Servo Motor
  • DANAGER MOTION / KOLLMORGEN ACD4805-W4 - (70A ) Vehicle / Motor Controller
  • Kollmorgen s60300 - SERVOSTAR 603 3 x 230-480v 2kva
  • KOLLMORGEN B-404-C-21 - GOLDLINE BRUSHLESS P.M. SERVOMOTOR
  • Kollmorgen T-5144-A - GE Aviation 739034-01 Direct Drive DC Torque Motor
  • KOLLMORGEN M.1302.8761 - CABLE, POWER
  • Kollmorgen CE03250 - Servostar Servo Drive
  • Kollmorgen K-342 - dual axis automatic autocollimator
  • Kollmorgen TT-4500-1010-B - Inland Motor
  • Kollmorgen S20260-Srs - Synqnets200 Series Servo Drive Forparts
  • Kollmorgen PRDRHP720SND-65 - drive CR06703-R
  • KOLLMORGEN S70362-NANANA - driver
  • Kollmorgen CR06260-000000 - SERVOSTAR CD AC Servo Driver
  • KollMorgen akd-m00306-mcec-D000 - Multi-Axis Master Programmable Drive AKD PDMM
  • KOLLMORGEN S61000 - SERVOSTAR 610 3X230-480V 10A
  • Kollmorgen AKD-P00306-NBCC-0000 - AKD Servo Drive
  • KOLLMORGEN CP306250 - SERVOSTAR SP Servo Drive
  • Kollmorgen MPK411 - controller
  • Kollmorgen S64001 - SERVOSTAR 640, factory-certified
  • Kollmorgen Servotronix Prdr0087006Z-00 - Lvd Servo Drive
  • Kollmorgen AKD-P00306-NAAN-0000 - Servo Drive Controller, 1.2KVA, 240Vac, 3 Phase
  • Kollmorgen MCSS08-3232-001 - MCSS06-3224-001 ServoStar Drives (AS-IS)
  • Kollmorgen CR06250-2D063A - drive
  • YASKAWA SGDP-04APA - SERVOPACK SERVO DRIVE
  • Kollmorgen s62001 - servostar 620-as 14kva 20a ip2o 3x 230-480v
  • Kollmorgen Seidel S60100 - Servostar 601 Servo Drive
  • KOLLMORGEN CR06703-R - HP SERVOSTAR CD CONTROLLER
  • kollmorgen Prdr0052200z-05 - graco inter Servo Component
  • KOLLMORGEN S403AM-SE - drive SERVOSTAR 443M-S
  • YASKAWA SGDP-01APA - SERVOPACK SERVO DRIVE
  • Kollmorgen CE06200-1H348H - SERVOSTAR CD Servo Driver
  • Kollmorgen S71262-NANANA - S700 Servo Amplifier 208Y/120V 480Y/277V
  • Kollmorgen S70302-NANANA-NA - S700 Servo Driver
  • KOLLMORGEN S61401-560 - ATS-SERVOSTAR 614-AS Servo Drive
  • KOLLMORGEN Industrial Drives BDS4A-103J-0001/102A21P - Servo Controller
  • Kollmorgen S71202-NANANA-NA-024 - S700 Servo Driver
  • KOLLMORGEN S70302-NANANA - driver
  • Kollmorgen CR06250 - SERVOSTAR Servo Drive
  • Kollmorgen CE03550 - drive
  • Kollmorgen S71202-NANANA - S700 Servo Driver
  • Kollmorgen AKD-B01206-NAAN-0000 - AKD Servo Drive
  • INDUSTRIAL DRIVE KOLLMORGEN PSR4/5A-112 - POWER DRIVE SERVO
  • Kollmorgen CE06260-000000 - Servostar CD Servo Driver