Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

New trends demand an update to electricity security frameworks

来源: | 作者:佚名 | 发布时间 :2023-11-20 | 579 次浏览: | Share:

The power sector landscape is changing dramatically

After more than a century of rising electrification, most middle- and high-income countries have managed to reach high levels of electricity reliability. This achievement is the result of complex institutional frameworks often involving multiple institutions and stakeholders. These frameworks govern crucial aspects, from the planning of the physical infrastructure, setting the market and investment frameworks, to the secure operation of the system and preparedness for natural catastrophes.

Electricity security frameworks are the result of more than a century of experience, with a relatively stable set of technological choices and well-understood risks. But past experience, as characterised below, is not always enough to prepare for the future. 

Electricity was mostly provided by vertically integrated utilities with regional monopoly using dispatchable thermal and hydro power plants and centrally controlled transmission and distribution networks.

Large rotating mass for power generation also provided system inertia. Power generators were controlled manually and not connected to digital networks.

Regulation made a single entity responsible for the stable supply of electricity in the region and set the electricity tariff at a level sufficient to cover the normal rate of return from the invested asset. Under this system, utilities were able to invest in generation and network facilities with a high level of confidence about their return.

In an increasing number of countries and regions, these assumptions no longer apply.

Electricity market systems with regulated regional monopolies have been replaced by unbundled competitive systems.

Variable renewable sources like wind and solar PV have become cheaper than thermal power generation and are increasing their share of supply. This development is welcome as countries seek to decarbonise the electricity sector. Solar PV is one of the rare technology areas that is on track to achieve its sustainability goals. Wind and solar are indigenous energy sources, and their growth can reduce fossil fuel import bills for many countries.

At the same time, these new variable sources require flexibility in the system to cover their variability and more elaborate forecasting of their outputs. They are non-synchronous generators and do not bring in system inertia.

Variable renewables, solar PV in particular, are more distributed than conventional generators. Systems with distributed resources can be more resilient than centralised systems, but require operators to have greater situation awareness. Some resources are even behind the meter at consumers’ properties. Network operators increasingly rely on demand-side response as a key source of flexibility.

To manage such complex systems, the role of digital information technologies is increasing exponentially, exposing the electricity system to cyberthreats.

Governments and industry are promoting decarbonisation of energy systems to achieve sustainability goals such as climate change mitigation, but ongoing climate change is already leading to extreme weather events and is challenging the robustness and resilience of electricity supply infrastructure.

Businesses across the entire electricity supply chain need to invest in secure stable electricity supply in response to these drastic changes, but are challenged by increased uncertainty and complexity surrounding electricity systems.

For this reason, our report focuses on three aspects that will increasingly attract the attention of policy makers:

changing electricity mix driving new measures to ensure operational security and longer-term system adequacy

emerging risks to cybersecurity

the need for greater resilience against adverse impacts of climate change, including extreme weather events

This report provides policy makers with a structural review of the types of threats the system will be facing in the coming decades and how they can be managed with proper institutional measures, market design and technology.

The new power sector landscape will be shaped by a combination of factors: a growing role for variable renewables, stagnation or reduced contributions from traditional low-carbon sources such as nuclear and hydro, decreasing thermal fleets, further digitalisation of the economy, climate change, and others. The combination of these factors will alter the potential impact and likelihood of electricity supply interruptions. They may well put more pressure on certain areas of the electricity security framework, such as rules designed to bring investment into the sector, while changing the nature of traditional energy security concerns, such as fuel security. How the threat map changes will depend on the specific power mix, the policies in place and the external threats to each power system.


Electricity system trends and their potential impacts on various aspects of electricity security

Secure supply of electricity requires many risk dimensions to be properly managed. From fuel availability and sufficient resources to cover peak demand and periods of stress, such as an unexpected plant outage, to the resources needed to ensure stable behaviour of the power system in real time, all these dimensions need to be considered and assessed. The table indicates how these dimensions can be affected by electricity system trends. Each dimension will be affected, sometimes in a positive manner, reducing the risks and increasing the set of tools available to maintain secure operation, but also potentially in a negative way. For example, in a country where the electricity mix is dominated by hydropower, growing reliance on solar PV could increase climate resilience and act as a good hedge against changing hydrology, but it may also require existing assets to be operated in a new, more flexible way.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module