Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide

来源: | 作者:FAN | 发布时间 :2026-02-10 | 7 次浏览: | Share:


Guidelines for Shielding, Wiring, and Practical Applications

1. Implementation of Electromagnetic Compatibility (EMC)

The high precision and fast conversion rate of the module make it sensitive to electromagnetic interference. To ensure performance, users must implement effective blocking measures.

Cabinet requirements: Modules must be installed in metal shielded cabinets.

Wiring separation: Signal lines should be spatially separated from interference sources such as power lines.

Shielding layer connection: The shielding layer of the on-site cable should be grounded on both sides of the cabinet and make extensive contact with the metal surface when entering the cabinet to achieve optimal discharge of high-frequency interference.

Design concept: The manufacturer emphasizes that although module design focuses on EMC, a large part of the responsibility for reliable system operation lies in the overall installation design of the user. Therefore, the module itself has not been affixed with the CE mark, and the user is responsible for CE compliance of the entire application system.

2. Principle of Analog Signal Wiring

The analog circuit design of the module is based on the concept of "common potential island".

Public Ground (AGND): It is strongly recommended that all connected sensors, actuators, and modules use the same 24V power supply to make AGND the common reference point of the system.

Common mode range limitation: Each analog channel is allowed to be connected to different ground potentials, but it must be ensured that the potential difference is within the common mode voltage range of ± 2V. Exceeding this range will result in measurement errors or even module damage.

Fault current protection: Despite internal protection, incorrect wiring, power supply, or high potential difference may still cause permanent damage. Before powering on, the polarity of the wiring must be checked repeatedly.

3. Example of Sensor Connection

The manual provides three typical connection methods:

Floating sensor: Use dual core shielded wires to connect IN+and AGND. Unused IN input terminals must be bridged to AGND to release the common mode voltage accumulated due to high input impedance and avoid random measurement errors.

Non isolated sensors with auxiliary power supply: The sensor must use the same power supply as the module. Signal connection IN+and IN - (polarity correct), AGND suspended. It is necessary to ensure effective potential balancing through public power sources.

Sensors that use internal reference voltage, such as potentiometers or bridge circuits, are connected to IN+, IN -, Uref, and AGND using 3-core or 4-core shielded wires. Ensure that the reference voltage source is not overloaded.

4. actuator connection

For analog output, in addition to signal lines (OUT) and analog ground (AGND), SENSE connection points are also provided. The SENSE line should be directly connected to the local ground of the actuator to compensate for the ground potential offset on the long cable, provided that the offset | U-REF | is less than 2V. Note: The SENSE line cannot be used alone as feedback.


System integration and software operation

Module identification and initialization: automatically completed by the operating system of the upstream unit controller, without the need for dip switch settings. The identification feature codes stored in the module are read by the controller.

Data conversion: Measurement and data transmission are controlled through an API (Application Process Interface) loop. AD conversion does not require a startup signal.

Data format: Analog values are passed as 16 bit integers. When the range is exceeded, the input channel will report a fixed limit value (+32752 corresponds to+9.995V, -32768 corresponds to -10.000V).

Sensor fault detection: When a sensor fails, the corresponding channel will report a value of+9.995V to the controller.

Software dependency: Specific operations (such as calling function blocks, setting sampling periods) depend on the software environment used (such as CP1131 or CPC++), and should refer to the corresponding programming manual.


Installation, maintenance, and service

Installation: Ensure that all ventilation openings are unobstructed. All power sources (including externally powered sensors) must be disconnected during work.

Maintenance: The module is maintenance free. Only dry, lint free cloths should be used for cleaning, and the use of cleaning agents is prohibited.

Repair: Users are strictly prohibited from repairing on their own. All repair work must be carried out by the manufacturer or its authorized service engineer, otherwise the warranty will be invalidated.

Scrap disposal: After the product lifecycle ends, it can be returned to the manufacturer for professional recycling at a fee.

  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • RELIANCE 0-57170 Industrial Drive System Component
  • Reliance Electric S-D4030-A Remote I/O Head Module
  • RELIANCE 0-57406-E Industrial Control Module
  • RELIANCE 57401-2 Control Interface Module
  • RELIANCE 57421 Electrical Control Component
  • Reliance Electric 57401 Remote I/O Head Module
  • RELIANCE S-D4007 Industrial Control Module
  • ABB SACO16D1-AA Digital Annunciator Unit
  • RELIANCE 803.65.00 Control Board for Industrial Systems
  • Reliance Electric 57C404C AutoMax Processor Module
  • RELIANCE 0-57C411-2 Industrial Control Module
  • RELIANCE 0-57C408-B Heavy-Duty Industrial AC Motor
  • Reliance Electric 0-57C406-E AutoMax Power Supply Module
  • RELIANCE 0-57C407-4H Industrial Control Module
  • RELIANCE 0-57C405-C Industrial Duty AC Electric Motor
  • Reliance Electric 0-57C404-1E AutoMax Processor Module
  • RELIANCE 0-57C402-C Drive Control Module
  • RELIANCE 0-57C400-A High-Performance Industrial AC Motor
  • Reliance Electric 0-51378-25 Digital Interface Board
  • RELIANCE S-D4041B Drive Control Module
  • RELIANCE INSPECTOR VCIB-06 Vibration Calibration Instrument
  • Reliance Electric S-D4043C Remote I/O Head Module
  • RELIANCE S-D4012 Drive Control Module
  • Reliance Electric 805401-5R Printed Circuit Board
  • RELIANCE ELECTRIC 0-60029-1 Drive Control Module
  • REXROTH VT-HNC100-1-23/W-08-C-0 Digital Axis Control
  • REXROTH VT-HNC100-4-3X/P-I-00/G04 Digital Axis Controller
  • REXRTOH VEP40.3CEN-256NN-MAD-128-NN-FW Industrial Embedded PC
  • Rexroth 0608820116 ErgoSpin CC-AS300-070 Tightening Tool
  • REXROTH MHD093C-058-PG1-AA Synchronous Servo Motor
  • REXRTOH VT-HNC100-1-22/W-08-C-0 Industrial Touch Monitor
  • Rexroth MSK060C-0600-NN-S1-UP1-NNNN IndraDyn S Servo Motor
  • REXRTOH VT3024 Industrial Monitor
  • Rexroth MHD041B-144-PG1-UN Synchronous Servo Motor
  • Rexroth VT-HNC100-1-23/W-08-S-0 Digital Axis Control
  • Rexroth VT-HNC100-1-23/M-08-P-0 Controller
  • REXRTOH VT-HNC100-1-22/W-08-0-0 | Hydraulic Valve Block Assembly
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth MHD095C-058-NG1-RN Hydraulic Motor
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • REXRTOH BTV04.2GN-FW | Bus Terminal Valve with PROFINET
  • Rexroth BGR DKC02.3-LK SCK02/01 ECODRIVE3 Control Assembly
  • Rexroth MKD025B-144-KG1-UN Servo Motor
  • REXRTOH R901325866+R900775346+R901273425A | Drive System Component Set
  • Rexroth CSH01.1C-SE-EN2-NNN-NNN-NN-S-XP-FW Drive Controller
  • REXRTOH DDS2.1W200-D | Digital Servo Drive
  • Rexroth VT3002-2X/48F Card Holder for Proportional Amplifiers
  • Rexroth VDP40.2BIN-G4-PS-NN Proportional Valve
  • REXRTOH MSK070D-0450-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK070C-0150-NN-S1-UG0-NNNN IndraDyn S Servo Motor
  • Rexroth MSK050C-0600-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK030C-0900-NN-M1-UP1-NSNN Servo Motor
  • Rexroth TV 3000HT PUMF Hydraulic Pump Module
  • REXRTOH R911259395 | Drive System Control Module
  • Rexroth VT-VSPA1-1-11 Proportional Amplifier Card
  • Rexroth VT3006S35R1 Proportional Valve Module
  • REXRTOH VT3006S34R5 Hydraulic Valve | Directional Control Valve
  • Rexroth VT3000S34-R5 Proportional Amplifier Card
  • Rexroth SL36 Servo Motor Controller
  • REXRTOH SE200 0608830123 | Inductive Proximity Sensor