Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • MOTOROLA MVME705B VMEbus Single Board Computer
    ❤ Add to collection
  • MOTOROLA MVME705B VMEbus Single Board Computer

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    • ¥18452.00
      ¥19442.00
      ¥18452.00
      ¥18452.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:0.440KG
    • Quantity:
    • (Inventory: 8478)
Description
<span style="font-size: 20px; font-family: arial;">MOTOROLA MVME705B VMEbus Single Board Computer</span>

MOTOROLA MVME705B VMEbus Single Board Computer

The MOTOROLA MVME705B is a VMEbus single board computer developed to meet the requirements of high-reliability industrial and embedded computing systems. Designed around a PowerPC processor architecture, this board delivers balanced processing capability, flexible system expansion, and robust communication interfaces suitable for real-time control environments.

As part of Motorola’s established VME computing portfolio, the MVME705B provides a stable hardware platform for long-life applications. Its architecture supports deterministic performance, making it suitable for automation systems, power infrastructure, transportation control, and other industrial domains where predictable operation is essential.

Processor Architecture and Performance

The MOTOROLA MVME705B is based on a PowerPC processor, offering efficient instruction execution and strong support for real-time operating systems. The processor architecture is optimized for embedded applications that require consistent performance over extended operating periods.

The board design enables high data throughput between the processor, memory, and peripheral subsystems. This allows the MVME705B to handle complex control logic, communication tasks, and system monitoring functions within a single computing platform.


Memory Configuration and System Flexibility

The MVME705B supports a scalable memory architecture that accommodates both volatile and non-volatile memory types. This flexibility allows system designers to tailor memory capacity according to application requirements, whether for control programs, operating systems, or data buffering.

Error detection and correction mechanisms are supported within the memory subsystem to enhance system stability. This feature is particularly valuable in industrial environments where continuous operation and data integrity are critical.

VMEbus Interface and Expansion Capability

As a VMEbus single board computer, the MOTOROLA MVME705B fully complies with VMEbus standards, enabling seamless integration into existing VME-based systems. The board supports high-speed data transfers across the VME backplane, facilitating communication with I/O modules, communication boards, and additional processing units.

The VME interface allows the MVME705B to operate as a system controller or as a peripheral processor within a multi-board configuration. This versatility makes it suitable for both centralized and distributed control architectures.

Integrated I/O and Communication Interfaces

The MVME705B is equipped with a comprehensive set of onboard I/O interfaces to support industrial communication and system integration. These interfaces typically include serial communication ports, Ethernet connectivity, and general-purpose I/O resources.

Ethernet support enables the board to participate in networked control systems, remote monitoring, and data exchange with supervisory platforms. Serial interfaces provide compatibility with legacy devices and field equipment commonly found in industrial installations.

Operating System Support

The MOTOROLA MVME705B is designed to support a range of embedded and real-time operating systems. Its hardware architecture is compatible with industry-standard RTOS platforms as well as embedded UNIX-like systems.

This operating system flexibility allows developers to select the software environment that best matches application requirements, whether for hard real-time control, data acquisition, or communication gateway functions.

Reliability and Industrial Design

Reliability is a core design principle of the MVME705B. The board is engineered for continuous operation in demanding industrial environments where temperature variation, electrical noise, and long service life are key considerations.

Component selection and board layout are optimized to ensure stable operation over extended periods. This design philosophy makes the MVME705B suitable for mission-critical systems where downtime must be minimized.


Application Areas

The MOTOROLA MVME705B is widely applied in industrial automation systems, where it serves as a central control processor or communication manager. Its deterministic performance and VMEbus compatibility make it suitable for power generation and distribution control systems.

In transportation and infrastructure applications, the MVME705B supports signaling, monitoring, and control functions that require high reliability. It is also used in test systems, data acquisition platforms, and specialized embedded control solutions.

System Integration and Long-Term Support

The MVME705B is designed to integrate easily into existing VME-based platforms, protecting system investments and simplifying upgrades. Its standardized form factor and interfaces reduce engineering effort during system design and expansion.

Long product life cycles and consistent hardware design make the MVME705B a suitable choice for applications that require stable configurations over many years. This is particularly important in industrial sectors with extended qualification and certification processes.

Conclusion

The MOTOROLA MVME705B VMEbus single board computer provides a reliable and flexible computing solution for industrial and embedded control applications. With its PowerPC processor architecture, scalable memory support, comprehensive I/O interfaces, and VMEbus compatibility, it meets the requirements of complex and long-term industrial systems.

By combining performance, reliability, and system integration flexibility, the MVME705B continues to serve as a dependable platform for mission-critical applications across a wide range of industrial sectors.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System
  • SCHNEIDER Modicon Quantum Automation Series
  • SEW MOVIDRIVE ® MD-60A Inverter: Comprehensive Technical Analysis of Industrial Drive Solutions
  • SEW MOVIDRIVE Inverter PROFIBUS Interface Configuration and Debugging Guide
  • SEW MOVIDYN ® Complete Guide for Installation, Debugging, and Maintenance of Servo Controllers
  • SEW MOVIDRIVE ® MDX60B/61B Inverter: Installation, Debugging, and Maintenance Guide
  • SEW MOVITRAC ® B frequency converter
  • SHINKAWA VM-5 Series Monitor
  • Toshiba TE3 Soft Starter Installation, Operation, and Maintenance Complete Guide
  • TOSHIBA N300 Pro NAS Hard Drive
  • TOSHIBA N300 NAS Hard Drives
  • Toshiba e-STUDIO Multifunctional Digital System Technical Specifications and Application Guide
  • TOSHIBA V200 Series PLC Programming and Safety Application Guide
  • TOSHIBA Unified Controller nv series™ Unified Controller nv series™
  • Toshiba Discrete IGBT Product Technology Analysis and Application Guide
  • Technical Analysis and Application of Toshiba V-Series Integrated Control System
  • TOSVERT VF-AS3 series 600V industrial frequency converter
  • Toshiba VRF Dx coil interface device
  • Toshiba T1-16S Programmable Controller I/O Module Detailed Explanation
  • CE 680 M511 industrial piezoelectric accelerometer
  • Hardware Explanation of Meggitt VM600 MPS Mechanical Protection System
  • Meggitt Vibro meter VM600Mk2 Mechanical Protection and Condition Monitoring System
  • WAGO MCS Connection System
  • WAGO 281-611 Fuse Terminal Analysis