Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Break the bottleneck of nuclear power technology development

来源: | 作者:佚名 | 发布时间 :2024-01-03 | 92 次浏览: | Share:



Despite the obvious advantages, the safety issue of nuclear power is still its life. We should make full use of our country's relatively leading advantage in high temperature gas cooled reactor technology, continue to promote relevant technological research, explore the commercial application and commercial advantages of high temperature gas cooled reactor, and seize the commanding heights of the world's nuclear power technology.

Recently, the national science and technology major project - Huaneng Shidao Bay High temperature gas cooled reactor nuclear power plant demonstration project was successfully connected to the grid for the first time, sending out the first degree of electricity, marking the world's first spherical bed modular high temperature gas cooled reactor with the characteristics of the fourth generation of advanced nuclear energy system, achieving a qualitative leap from "laboratory" to "engineering application". It marks that China has become one of the few countries in the world to master the fourth generation nuclear energy technology, which means that China has become the leader of the world nuclear power technology in this field.

The completion of high-temperature gas cooled reactor is expected to open a new route for the application of nuclear energy and become a milestone in the history of human energy progress. As the global economic development continues to increase the demand for energy, people gradually realize that nuclear energy has a large energy density, nuclear power operation is stable, reliable, refuelling cycle is long, the production process almost does not produce carbon emissions, and can be used as a large-scale replacement of fossil energy base load power supply.

Despite the obvious advantages, nuclear power has a big "life gate" - safety. Historically, serious nuclear power plant accidents such as the Three Mile Island in the United States in 1979, Chernobyl in the Soviet Union in 1986, and Fukushima in Japan in 2011 have triggered greater social panic and cast a shadow over the development of nuclear power. It was realized that nuclear reactor cores must be sufficiently cooled at all times, otherwise serious accidents could result. To this end, nuclear power plants have added a variety of water injection and water refill systems, which include a large number of active components such as pumps and valves, and need to ensure the reliability of their power sources, which leads to more complex and large systems, greatly pushing up the cost and cycle of nuclear power construction. The development of nuclear power in the world has also reached a bottleneck.

The principle of nuclear power generation is not much different from that of thermal power plants, which use heat to "boil water", but the latter uses coal, gas, etc., to generate heat, and the former uses nuclear reactors to generate heat. Therefore, the development of the reactor technology with inherent safety, that is, the automatic cooling of the reactor does not rely on human intervention, but only uses the law of nature, has become the development goal that each reactor type has been pursuing. According to international standards, the fourth-generation advanced nuclear energy system has two core indicators: first, no matter what happens to the nuclear power plant, it will not cause damage to the public outside the station; Second, it is economically competitive with other power production methods.

The quasi-commercialization of high temperature gas cooled reactor is a key step to break the bottleneck of nuclear power development. High temperature gas cooled reactor, as the name suggests, refers to a nuclear reactor technology with high temperature characteristics and the use of gas for core cooling, and inherent safety is its core feature. Compared with other reactors, high-temperature gas cooled reactors produce less waste heat, only by natural heat dissipation can take away the heat of the core, and its fuel composition is also very special, can withstand the melting point of about 1600 ° C high temperature. Even if all cooling capacity is lost and a serious accident is faced, without any outside intervention, the reactor can remain in a safe state, and there will be no core meltdown accident, known as the "fool reactor".

While solving the safety problem, the power generation efficiency of high temperature gas cooled reactor has also been greatly improved. The exit temperature of coolant in nuclear reactor has a decisive effect on power generation efficiency. The average temperature of the helium outlet of the high-temperature gas cooled reactor can reach 750℃, and has the potential to increase to 950℃ or more. The thermal efficiency can reach 50% by using the helium circulation mode. Compared with a pressurized water reactor, the power generation capacity of a high-temperature gas cooled reactor is equivalent to 1.5 times that of a pressurized water reactor with the same thermal power.

The high-temperature gas cooled reactor adopts a small modular "LEGO" splicing design, which makes the use of nuclear power more convenient. We can build nuclear power plants like building blocks, this modular design and construction method can greatly shorten the construction cycle of nuclear power plants, while reducing construction costs. Based on the inherent safety characteristics, the high-temperature gas cooled reactor can also greatly simplify emergency measures, and the plant site is more adaptable, and it has the conditions for construction near large and medium-sized cities with relatively dense population.

More importantly, the high-temperature gas cooled reactor has greatly expanded the field of nuclear power utilization. The high temperature working medium produced by the high temperature gas cooled reactor can be used as a high temperature process heat source for coal gasification, liquefaction, technical smelting and other processes, district heating and seawater desalination, and can greatly reduce the cost of high temperature hydrogen production, forming a pollution-free, emission-free energy chain. Fractional utilization of waste heat can also reduce the operating cost of power station.

To promote energy transformation and achieve the goal of "dual carbon" is a complex systematic project, because each energy solution has its advantages and disadvantages, it is impossible to rely on a single type of energy to complete the transformation task. Given the scale of global warming and human development, nuclear power will remain an important part of the energy supply. The emergence of high-temperature gas cooled reactors has made it possible to build and utilize nuclear power as safely and efficiently as Lego, and its safety and economic advantages will have a major impact once proven in commercialization. In the face of the upcoming replacement of the global nuclear energy system, we should make full use of China's relatively leading advantages in high temperature gas cooled reactor technology, with the help of demonstration projects, continue to promote the technical research of high temperature gas cooled reactor, explore the commercial application and commercial advantages of high temperature gas cooled reactor, seize the commanding heights of the world's nuclear power technology, so that advanced nuclear power technology can better ensure energy security and serve carbon neutrality.


  • ABB, ALSTOM Power GP-2695-A - Scraper Clip and Bushing
  • Alstom SPC160 - Servo Motor Position Controller v2.1
  • CROWN 700 Alstom EX-4654 - Coal Pulverizer Exhauster Whizzer 63099
  • ABB F12M4H 57344 - Servomotor Type Alstom
  • Alstom AB125 VOS125 - Versatile Output Module SCH 54-329309
  • GE FANUC 90 70 CARD - ALSTOM MARTEK POWER AL122A - CD101320 - C292
  • CONVERTEAM MMLG02 / MMLG02 - Test Block
  • Alstom PS421 - Overcurrent time protection device P89421-0-1420000-300-403-600-705
  • Alstom AB125 VOS125 - Versatile Output Module SCH 54-329309 Unused
  • Alstom MVTT14R1NA0751E - Tripping and Control Relay SN.311664/05/08
  • Alstom Power 28689 - Cartridge Filter APF715X (Pack of 4) 9-3/4" x 2-5/8" x 1"Bore
  • Alstom MV3000 - Spare bidirectional DC power converter transistor pre-charge module
  • Alstom ALSPA MD2000 178-400 (205-460) - Frequency converter No: 029.300111
  • Alstom TUG 0212 - Tropicalized Relay
  • CONVERTEAM MVAJ14D1GA0783A / MVAJ14D1GA0783A - Relay
  • Alstom vajhm23bf22d - tripping relay
  • CONVERTEAM / ALSTOM / GE ENERGY PIB 100G / 3BEE0226 A - Power Interface Board
  • Alstom KCGG14201T50CEC - Single Phase Overcurrent AC Relay Areva
  • GE Alstom Cegelec IC693MDL632D - Alspa 80-35 Digital Input Module 8 Port VGC
  • alstom STC.ZN0019101.A01,STC.ZN0017212.A16,WGS.ZN0019101.A01 - 3x Board, Part
  • CONVERTEAM MVTT14B1BA0752A / MVTT14B1BA0752A - Relay
  • Alstom MVAX31S1DD0754A - Grid Alstom 10418907
  • CONVERTEAM MVAJ11D1GB0780A / MVAJ11D1GB0780A - (tested cleaned)
  • Areva Alstom MVAJ23R1AB0757F - Light and Control Relay
  • Alstom D-984-0578 - Intensity and Fault Detection Board A/W Rev 01
  • ALSTOM MFVUM 22D1AA0014A - Digital Frequency Relay Freq Rating 10.001 - 500 Hz
  • Alstom 70AI01 - NEW CARD
  • Alstom MVAA23T1BA0810A - Single Phase Overcurrent AC Relay By Areva
  • Alstom MVAJ23R1AB0757 - Single Phase Overvoltage AC Relay By Areva
  • CONVERTEAM P-802-110-C / P802110C - Module
  • Alstom vaa11yf8752ca - auxiliary relay
  • ALSTOM ALSPA MV500 MV504A4C1 - Inverter
  • CONVERTEAM MVAA21B1BA0755B / MVAA21B1BA0755B - Relay
  • Alstom D-984-072102 - , LAMP AND METER CIRCUIT BOARD #217588
  • Alstom KCEG14201F51EEC - Overcurrent Protection Relay, IN 5A VX 48-250Vdc, VN 110d ~^
  • Alstom KCGG14201T50CEC - Single Phase Overcurrent AC Relay Areva
  • General Electric Energy / CONVERTEAM / ALSTOM MVC 3006-4006 / MVC30064006 - / DELTA Module
  • Areva Alstom KCGG14201T50CEC - Single Phase Overcurrent AC Relay
  • Alstom KCGG14201T50CEC - Single Phase Overcurrent AC Relay By Areva
  • Alstom KCGG14201T50CEC - Single Phase Overvoltage AC Relay By Areva
  • Alstom MVAZ03T1AA0751A - Single Phase Overcurrent AC Relay By Areva
  • Alstom time-2 - Relay 220/240v AC / Dc
  • Alstom Bitronics M870D - Remote Display Unit 19490
  • CONVERTEAM P-802-117-C / P802117C - Module
  • ALSTOM D-984-072101 - , LAMP AND METER CIRCUIT BOARD #217611
  • GEC ALSTOM MWTU11-D1CD0102A - SINGLE PHASE DEFINITE TIME OVER/REVERSE POWER RELAY
  • ALSTOM / CONVERTEAM / GE ENERGY PIB 651B-2100 -3.3 KV/L 1308 - Power Interface Board
  • ALSTOM / CONVERTEAM / GE Energy 651B-2100-3.3 kV/L 1529 - NEW with box
  • CONVERTEAM P-802-110-C / P802110C - Module
  • General Electric Energy / ALSTOM PIB702A / PIB-702A - Power Interface Board
  • ALSTOM / CONVERTEAM / GE Energy 671 -2600 / 3BEI0136F - NEW with box
  • CONVERTEAM ALSPA-C100/P1 / ALSPAC100P1 - Module
  • ALSTOM POWER SC-2387-D - Bevel Pin (24 teeth) - BORE 2-3/4 inches with 5/8 inch keyway
  • Alstom RF120 - Filter Pack U1000510 Rev A.02
  • ALSTOM D-984-0579 - , FREQUENCY DETECTION BOARD #217606
  • Alstom KCEG14201V21CEE - Overcurrent Protection Relay, Used, UK ^ 7278
  • CONVERTEAM MVTP31V1CB0751E / MVTP31V1CB0751E - Relay
  • ALSTOM 94.105.645-02 L2 - & Extended technical support
  • CONVERTEAM VX500 / VX500 - Drive
  • Alstom RF120 - Filter Pack U1000510 Rev A.02
  • ALSTOM / CONVERTEAM / GE Energy PIB-671/1500/F 1409 / 3BEI0136 G - Power Interface Board
  • Alstom MiCom P241311A2M0570J - Motor Protection Relay 0395
  • ALSTOM Tipo A96LC - Relay
  • ALSTOM / CONVERTEAM / GE Energy 671 -1500 /F 1406 - NEW with box
  • CONVERTEAM P343111B2A0030A / P343111B2A0030A - Relay
  • Alstom Power 1BMBR0000091 - LOT OF 3 UNC 60 GRAM BALANCE WEIGHTS 5/16"
  • Alstom WGS.ZN0028011 A04 - PCB Card ,D12213090127 ,Un&7455
  • ALSTOM / CONVERTEAM / GE Energy 671 -1500 /F 1332 / 3BEI0136 J - NEW with box
  • Alstom Drives and Controls GDS1192-6003 - Power Supply,XP PLC SX200N649,New/Sealed
  • ALSTOM Pib 100G - Pib 101C 310 - CONVERTEAM Bgtr 8HE Rack Vme 8 Slots
  • Alstom Bitronics M870D - Remote Display Unit
  • ALSTOM Micom P139 - Ptb 04 ATEX3044 P1393604544AW00E01
  • ALSTOM ETU-V3707750 R4 - Ethernet Terminal Unit (150-1)
  • ALSTOM MAE 00-11 - I/O TERMINATION PANEL AVE248520
  • Alstom RF120 - Filter Pack U1000510 Rev A.02
  • Alstom STC.ZJ0407101.A03 - PCB Card ,&7454
  • General Electric Alstom Bcm - Outdoor 03749110 Unused
  • CONVERTEAM MV1024 / MV1024 - (REPAIR EVALUATION ONLY)
  • CONVERTEAM RX620JR1104 / RX620JR1104 - Resistor
  • ALSTOM / CONVERTEAM / GE Energy 651B - 2100-3.3 kV/L 1603 - NEW with box
  • ALSTOM MVAJ105RA0802A - Protection Relay,VX 110-125 AC / Dc ,MVAJ101RA00802A,GB
  • CONVERTEAM MVAJ13D1GB0780A / MVAJ13D1GB0780A - Relay
  • Alstom vaa11yf8752ca - Auxiliary Relay
  • Alstom Alspa MD2000 - Operating Unit
  • Alstom mcgg62n1cd0503f - Over Current Protection Relay
  • Alstom cdg11af015sach - Earth Fault Relay
  • Alstom Micom p40 Agile - Distance Relay Transmitter p44291ab6m0720m
  • Alstom vajc11bf1004aba - Voltage Control Relay
  • Alstom rtx-151 - time relay
  • CONVERTEAM MVAA11B1DA0784A / MVAA11B1DA0784A - Relay
  • ALSTOM / CONVERTEAM / GE Energy PIB-651A / 3BEF0010 A - [NEW] NEW with box 651A
  • ALSTOM MCGG22D1CB0503B - MCGG 22 Single Phase Over Current & Earth Fault Relay
  • Alstom Power 1BMBR0000092 - LOT OF 5 UNC 80 GRAM BALANCE WEIGHTS 5/16"
  • ALSTOM MAE 00-11 - I/O Termination Panel AVE248520
  • ALSTOM / CONVERTEAM / GE Energy 651A -1500-3.3 kV/L 1323 - NEW with box
  • ALSTOM MAE 00-05 - I/O Termination Panel AVE250712
  • ALSTOM / CONVERTEAM / GE Energy PIB651B 3BEF0010 A - Power Interface Board
  • Alstom vag11yf8011adch - No Voltage Relay 110v AC
  • Alstom Vax - Travel Circuit Monitoring Relay vax31zg8075bch
  • ALSTOM MAE 00-07 - Termination Panel
  • Alstom Vaa - Auxiliary Relay vaa11yfb401f (M)
  • Alstom vajhm23bf22d - tripping relay
  • Cegelec / Alstom gds1017-4001 - Alstom Upgrade Card
  • ALSTOM / CONVERTEAM / GE Energy PIB651B 3BEF0010 A - Power Interface Board
  • CONVERTEAM VNTC-4025E / VNTC4025E - Drive
  • Alstom KCEG14201V21CEE - Overvoltage Protection Relay, Used, GB ^ 7278
  • CONVERTEAM C10/120-M2 / C10120M2 - Control Module
  • Alstom Single Phase Overcurrent AC Relay KCGG14201T50CEC - by Areva
  • CONVERTEAM 029.108-410 / 029108410 - Module
  • Alstom KCEG14201F51EEC - Overcurrent Protection Relay, In 5A VX 48-250Vdc, VN 110d ~^
  • ALSTOM / CONVERTEAM / GE Energy 671 -2100 / 3BEI0136F - NEW with box
  • ALSTOM / CONVERTEAM / GE Energy 671 -2600 /A 1332 - NEW with box
  • Alstom RF120 - Filter Pack U1000510 Rev. A.02 Used
  • GEC MIDOS ALSTOM MCAG14C1DD0003B - *NEW* PROTECTIVE RELAYS MCAG (2F3)
  • CONVERTEAM 30V9400/10 / 30V940010 - Power Supply
  • CONVERTEAM MVAJ11D1GB0783A / MVAJ11D1GB0783A - (used tested cleaned)
  • ALSTOM / CONVERTEAM / GE Energy 651B -2100 -3.3 kV/L 1504 - NEW with box
  • Alstom MX3IPG1A.11 - Modulex3 Integrated protection for generator MX3IPG1A
  • ALSTOM / CONVERTEAM / GE Energy PIB651A-1500-3.3kV/L 1330 - Power Interface Board
  • CEGELEC ALSTOM GDF15 4001 - GEMDRIVE FIELD CONTROL REV C.............NEW PACKAGED
  • Alstom WGS.ZN0028011 A04 - PCB Board,D12213090127,Un&7455
  • Alstom time-2 - Relay 220/240v AC/Dc
  • Alstom S98101/106 - Fan 220V 50/60Hz 4.5" w/ Finger Guard ! NEW !
  • Alstom RF120 - Filter Pack U1000510 Rev A.02
  • ALSTOM Type A96LC - Relay
  • General Electric Alstom Bcm Remote 03749110 - Switch
  • ALSTOM GEC MOTORMASTER 203 - MN16D3T155 WOW!!
  • Alstom CBU.ZN0069002A/03 120 - Control Board, Part, &8082