Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Domestic and foreign geothermal power generation technology development status and trend

来源: | 作者:佚名 | 发布时间 :2024-01-05 | 669 次浏览: | Share:

9_ Copies.

In the process of exploitation and utilization of middle and low temperature geothermal resources, dual-working fluid cycle and Karina cycle technology have broad prospects for development.

10.A schematic diagram showing the basic concept of a low-temperature  geothermal binary ORC system for electrical power  generation.

11_ Copies.

Foreign ORC generator set product information

The Karina cycle is a new thermal cycle, which is different from the conventional Rankine cycle. The mixture of ammonia and water is used as the working medium, and the boiling point of the mixed working medium is changed with the change of the ratio of ammonia to water. When the heat source parameter changes, only the ratio of ammonia and water needs to be adjusted to achieve the best circulation effect. The temperature rise curve of the working medium is closer to the temperature drop curve of the heat source, so as to reduce the heat transfer temperature difference as much as possible, reduce the entropy increase of the system during the heat transfer process, and improve the cycle efficiency. Because of this remarkable feature of the Karina cycle, it has been widely used in the field of medium and low temperature geothermal power generation. The current industrial application shows that the cycle efficiency of the Karina cycle power generation technology is 20% ~ 50% higher than that of the Rankine cycle. However, due to the use of liquid ammonia as the circulating working medium, there are high requirements for the sealing of the system, and the storage and use of working medium will have a certain impact on the environment. Attention should be paid to strengthening the environmental assessment work in the construction process of the power station.

12_ Copy.

The Kalina power cycle technology introduced from the United States is the main means for Shenghe Company to make breakthroughs in solar thermal power generation, geothermal power generation, cement waste heat power generation, float glass, iron and steel industry, thermal power plant to improve cycle efficiency, coke industry and ferroalloy furnace waste heat power generation and waste heat utilization. This technology could significantly increase the efficiency of Rankine cycles currently used in conventional thermal power generation and waste heat generation systems. This technology using ammonia water as the circulating working medium is derived from the conventional Rankine cycle and has great particularity.

13_ Copy

2. Exploitation of middle-deep geothermal resources and dry hot rock resources

In addition, after the large-scale development of shallow geothermal energy, middle-deep geothermal resources and dry hot rock resources will become new resources of geothermal power generation technology. In the next step of the development of geothermal power generation technology, attention should be paid to the exploitation of middle-deep geothermal resources and dry hot rock resources.

enhanced geothermal systems (EGS) are emerging for the development and utilization of hot dry rock (HDR) thermal energy 3 ~ 10 km deep underground. Enhanced geothermal power generation technology, by injecting water back into groundwater, To create new geothermal resources, geothermal resources can be obtained at higher temperatures, which can reach 175 ~ 225 ° C. Generally, dual-cycle power generation is used to maintain the pressure of geothermal water and reduce the energy consumption of recharge.

14. Fenton EGS in the United States, SoultzEGS in France, Rosemanowes EGS in the United Kingdom, Hijiori EGS in Japan, Cooper EGS in Australia, etc., after 40 years of field test and research, Technical achievements have been made in drilling exploration, hydraulic fracturing, artificial heat storage and heat recovery cycle. In the field of dry hot rock, China's initial investment is small, mainly funded academic exchanges, exploration and research, and has not formed a national level of dry hot rock technology research and development base and equipment conditions.

3. Development trend of geothermal power generation technology

However, the new combined cycle power generation technology is the development direction of geothermal power generation technology. The cycle efficiency of single steam Rankine cycle power generation technology is low, only less than 20%; The discharge temperature of tail water is relatively high, generally above 100℃, and the utilization of geothermal energy is insufficient. The dual-working fluid cycle and Karina cycle power generation technology systems are more complex, involving two sets of working fluid systems, but the cycle efficiency is high, and the tailwater discharge temperature can be reduced to below 60℃. In the future geothermal power generation technology, the way of combined cycle can be adopted. In the high temperature stage of geothermal water, the expansion type steam power generation system is used to utilize the high temperature part of geothermal energy. When the temperature of geothermal water cannot meet the operating conditions of expansion power generation, the dual-working medium cycle or Karina cycle technology is adopted to make full use of the low temperature part of geothermal energy and maximize the efficiency of geothermal power generation cycle. Based on the expansion system, the Kizildere geothermal power station in Turkey jointly uses the dual-working mass cycle technology to carry out the research of the test unit, the maximum power reaches 18.238kW, the cycle efficiency reaches 38.58%, and the performance of the combined cycle power generation system is stable.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller