Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Electricity for heating and storage: geothermal energy development

来源: | 作者:佚名 | 发布时间 :2024-01-05 | 941 次浏览: | Share:

According to the statistics of the 2020 World Geothermal Congress, at the end of 2019, the total installed capacity of direct utilization of geothermal resources in 88 countries worldwide was 107727MWt (Figure 3), and the energy use was about 1020887TJ/ year (283580GWh/ year). The variation trend and distribution of installed capacity of various geothermal direct utilization modes are shown in Table 1. It can be seen that the installed capacity of various geothermal resources direct utilization modes has increased significantly, especially the rapid growth of ground source heat pump.

With more and more attention paid to ground source heat pumps, the application area and scale of geothermal resources continue to expand.

The comprehensive geothermal cascade utilization undoubtedly improves the utilization rate and economic benefits of geothermal resources. Many countries have begun to adopt this technology one after another. Kenya has developed rapidly in geothermal power generation in recent years, and its direct utilization of geothermal energy is also very distinctive. Kenya's Eburru project utilizes geothermal resources produced in two shallow Wells for drying agricultural products, heating greenhouse, and poultry incubation, etc. In addition, there are also geothermal cascade utilization projects in Iceland, Austria, and Germany.

Since the first World Geothermal Congress in 1995, the heat directly utilized by geothermal energy in China has always ranked first in the world. At the end of 2014, the direct use of geothermal energy in China took place gratifying changes, and the proportion of geothermal heating exceeded that of hot spring bathing for the first time. By the end of 2019, China's geothermal direct utilization capacity was 40,610MW, accounting for 37.7% of the world's total installed capacity, and the annual utilized energy was 443,492TJ/year, accounting for 43.4% of the world's total utilized energy. Geothermal heating is the most important geothermal utilization mode in China besides ground source heat pump, accounting for 55.6% of the world's total annual heat utilization.

In 1990, the country's geothermal heating area was only 1.9 million square meters, 11 million square meters in 2000, and 478 million square meters in 2019. In 2019, the area of hydrothermal geothermal heating in Hebei Province reached 160 million m2, and Xiongxian County was also built into a "smoke-free city" of geothermal heating. Under the guidance of the "double carbon" goal, it can be predicted that the speed of geothermal resource development and utilization will continue to accelerate.

Geothermal energy storage utilization

Geothermal energy storage is a kind of energy storage system that uses underground aquifers as the medium to store heat energy. It injects and draws groundwater from aquifers through underground Wells, enabling heat energy storage and recovery (Figure 4). Geothermal energy storage can make up for the imbalance in the time/space distribution of energy supply and demand, can comprehensively utilize a variety of renewable energy forms, reduce dependence on fossil fuels, provide a good solution for energy conservation, emission reduction and environmental protection, and is also a powerful means to help China achieve the goal of "dual carbon".

According to the depth of the aquifer, geothermal energy storage systems can be divided into the following two categories:

1. Shallow geothermal energy storage, aquifer depth is shallow at 500m, storage hot water temperature is generally lower than 50℃;

2. Deep geothermal energy storage, aquifer depth is usually 500m deep, storage hot water temperature is generally 50~150℃.

Because of the low temperature of shallow geothermal energy storage, its main use is the heating and cooling of buildings. The international application of shallow geothermal energy storage systems began in the middle of the 20th century. In China, the practice of using shallow underground aquifers for heat storage was developed earlier. In the 1960s, Shanghai carried out underground aquifer heat storage technologies of "winter irrigation for summer use" and "summer irrigation for winter use".

Up to now, a total of six shallow geothermal energy storage systems have been built and put into use in China. In recent years, with the development of emerging industries, the utilization of shallow geothermal energy storage has become more diversified. There are practical examples of using shallow geothermal energy storage in both greenhouse agriculture and large data centers.

Deep geothermal energy storage can be stored at a higher temperature, some even exceeding 100 ° C, and can mainly be used for power generation and heating. The research and utilization of deep geothermal energy storage began in the 1980s. In recent years, with the increasing demand for energy, deep geothermal energy storage technology has received renewed attention, and more and more research and engineering practice on deep geothermal energy storage technology have been carried out.

In 2018, the EU funded the underground heat storage project HEATSTORE, with a total investment of 50 million euros, 9 countries participated (Germany, France, the Netherlands, Switzerland, Belgium, Denmark, Iceland, etc.), the project lasted for 5 years (2018-2022), and funded a total of 6 underground heat storage demonstration projects, including 3 deep geothermal energy storage projects. In addition, the National Science Foundation (NSF) funded the heat storage project Geothermal Battery, a total investment of $10 million, led by the University of Utah, Idaho National Laboratory and a number of enterprises to participate.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card