Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Global gas industry trends

来源: | 作者:佚名 | 发布时间 :2024-01-16 | 797 次浏览: | Share:

(1) The role of natural gas in the energy transition has been further highlighted

In the context of climate change, the low-carbon transformation of the global energy system, coal-based thermal power generation is limited, and in the face of extreme climate impacts, the instability of intermittent energy is fully manifested, at this time, the most realistic choice to increase output and flexible peak regulation is natural gas. Considering the impact of extreme weather and climate events on the energy supply system as the old and new energy systems transition, the role of natural gas in the energy transition will be further highlighted.

In the medium and long term, countries' clean transition to low-carbon or even zero-carbon energy is bound to have a huge impact on the growth of fossil energy demand, including natural gas. However, in the short and medium term, the pressure of emission reduction drives the energy policies of various countries to lean towards the use of clean energy, and the global trend of carbon reduction and emission reduction will provide greater room for the growth of natural gas consumption.

In addition, in the context of climate change, the low-carbon transformation of the global energy system, coal-based thermal power generation is limited, and in the face of extreme climate impacts and epidemic impacts, the instability of intermittent energy is fully manifested, and the imbalance between supply and demand is further aggravated. European countries have been trying and exploring the energy transition for a long time, but through the energy supply shortage and soaring prices represented by natural gas, even the "leader" of the global energy transition, the European region has not been able to cope with the impact of extreme climate change on the energy supply system. It exposes the shortcomings in the stability of the energy system and the emergency support ability, so that in the case of insufficient supply of new energy caused by climate, short-term price fluctuations are induced, and then the transmission and diffusion between different energy varieties and regions, causing global energy prices to rise.

According to the current status quo of technological development, when renewable energy encounters climate change, the most realistic choice to increase output and flexibly peak regulation is natural gas. As the world tries to reduce coal and increase the use of clean energy, countries are increasingly dependent on natural gas. Considering the impact of extreme weather and climate events on the energy supply system as the old and new energy systems transition, the role of natural gas in the energy transition will be further highlighted.

The United Nations Intergovernmental Panel on Climate Change (IPCC) released the Working Group I report of the Sixth Assessment Report, Climate Change 2021: The Physical Science Basis, in August this year. The report believes that climate change will intensify in all regions in the coming decades. As global temperatures rise, the intensity and frequency of extreme heat events are increasing rapidly. Long-term climate uncertainty, especially the high probability of extreme weather, will increase short-term gas demand.

(2) The natural gas industry is developing towards low carbon

In order to achieve large-scale development of natural gas in the future low-carbon world, the most critical thing is to decarbonize. The natural gas market and key industry players are exploring the possibility of reducing carbon emissions using a variety of tools, including CCUS technology, hydrogen and carbon offset mechanisms.

1. CCUS technology is introduced into the whole industry chain

Carbon capture and storage (CCS) technology can achieve effective storage of carbon dioxide without changing the energy structure, which is an important way to deeply reduce carbon dioxide emissions. Carbon capture, utilization and storage (CCUS) is the development of CCS. After purifying the captured carbon dioxide, it is put into a new production process for recycling and reuse, so as to make it a resource. It can not only achieve carbon dioxide emission reduction, but also produce economic benefits, and is more practical. The promotion and application of CCUS technology provides strong support for the low-carbon development of the whole natural gas industry chain. On the one hand, CCUS technology helps oil and gas production operations achieve net zero emissions, oil and gas companies often use old oil and gas fields to implement carbon dioxide storage, through the capture of carbon dioxide to drive oil production. For example, Saudi Aramco uses carbon dioxide captured in natural gas projects for enhanced oil recovery, and Saudi Aramco believes that the circular carbon economy is the best system to ensure continued economic growth while reducing carbon emissions globally. On the other hand, the use of CCUS technology in natural gas power generation and other fields has expanded space for the growth of natural gas consumption. In its October 2020 report, "The Role of CCUS in low-carbon power generation Systems," the IEA pointed out that CCUS technology can provide effective support for natural gas power plants to play a more important role in the future power system.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller