Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Exploration and application of zero-carbon technology for natural gas power generation

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 310 次浏览: | Share:

Zero carbon technology is an important technology for the future development of natural gas power generation 

Technical options, a breakthrough in zero-carbon technology, can be developed for natural gas

Electricity industry development in exchange for new space. Carbon capture, utilization and

Sequestration (CCUS) technology will capture carbon dioxide widely

Used in various fields, can realize resource utilization, with present

Practical operation. In recent years, hydrogen blending of natural gas has gradually become a research field

Investigate hot spots. Hydrogen blending of natural gas can increase natural gas combustion

Efficiency, while having energy saving and environmental protection benefits, is natural gas

Electricity is one of the key ways to achieve zero carbon emissions in the future. Gas turbine

The machine has been operating with high hydrogen/low calorific value gases for decades.

Currently, the most advanced HA-class gas turbines are capable of burning for days

Natural gas is mixed with up to 50% hydrogen (by volume) and

It is expected to be 100 percent hydrogen by 2030.

The characteristics of hydrogen are significantly different from those of natural gas.

Compared to methane, the calorific value per unit volume of hydrogen is methane

30%, and the calorific value per unit mass is 2.4 times that of methane. with

Sample calorific value, fuel volume increased significantly, but Huabai index and

Methane has not changed much. In addition, the combustion rate of hydrogen

Very fast, five to ten times faster than methane. And hydrogen combustion

High temperatures, about 170 degrees Celsius higher than methane combustion,

High NOx emission.

Based on the above inherent characteristics of hydrogen, GE HA level

The burner DLN2.6e of the gas turbine adopts micro-cell premixed combustion

The combustion technology was developed by GE and the U.S. Department of Energy

Development began in 2005 specifically for hydrogen combustion

Applied technology. Figure 9 shows a profile of DLN2.6e.

The grey color of the tube bundle part is advanced premix, red

The color part is the shell of the premix. Axial fuel is fired in stages

The burning nozzle is distributed on the integrated part of the transition section of the combustion cylinder

Lower. The rear half of the integral with a stage 1 nozzle inlet

Connect. Compressor exhaust countercurrent surrounds the entire combustion chamber.

The air counterflows into the burner end cap and then into the premix

The tube bundle and the fuel in the outer cavity of the tube bundle pass through the microhole in the tube wall

Mixed uniformly in microtubules

The design can solve some problems of hydrogen-doped combustion:

1. Fuel adaptability. The maximum variation range of Huabai index can be +/-15%, which is good

The same burner can burn both pure methane and pure hydrogen.

2. High premixing efficiency. Compared to the previous large nozzle with a cyclone, the DLN2.6e uses

Small size nozzle without cyclone (diameter of millimeter class), not only fully premixed, but

And can maintain the characteristics of fast fuel speed, when the fuel speed is faster than the combustion speed, can

In order to avoid the occurrence of tempering.

3. Strong NOx emission control ability. Using a small size nozzle, premixed fully, the burner and over

The crossing section is combined into one, reducing the time of high temperature smoke retention, using graded combustion to make fire

The high temperature area of the flame is more uniform, reducing NOx emissions.

The gas turbine is powered by 100% hydrogen or a mixture of hydrogen

Only the gas turbine and auxiliary systems need to be modified to a certain extent

Yes. So a gas-fired power plant built today does not mean

CO2 emissions will remain constant throughout the life cycle of the plant

Hold at the starting level. Future costs and technical challenges

Breaking can make hydrogen competitive and can be used as zero-carbon dispatchable

Fuel to supplement renewable energy.

In terms of hydrogen-doped combustion, there are more than 100 GE units worldwide

Hydrogen and low calorific value fuel units in operation, cumulative operation

More than 8 million hours. Long Ridge, USA

One of Energy's HA-class fires in Ohio

Gas-fired power plants are experimenting with blending natural gas into fuel

Hydrogen is the way to achieve a low-carbon transition. It's not just beauty

China's first hydrogen-fueled gas-fired power plant is also the world's first

HA class combined cycle gas power plant with hydrogen combustion.

The power plant is equipped with GE 7HA.02 gas turbine with installed capacity

485 megawatts, which is expected to meet 400,000 local homes

Demand for electricity. Long Ridge Energy pioneered industry response

With the first, the unit has now achieved 15%-20% (per body

Product calculation) proportion of hydrogen-doped combustion and planned in 2030

100% hydrogen burning capacity. In addition to powering the grid,

Long Ridge Energy also plans to convert this "low-carbon" electricity

To some of the most power-hungry data centers around,

To help them achieve carbon neutrality as soon as possible.

China's first hydrogen-fueled 9HA power plant will also be launched in Guangzhou

East Huizhou. The plant is owned by Guangdong Energy Group

Huizhou Daya Bay petrochemical area comprehensive energy station construction, including

Two combined cycle 9HA.01 heavy duty gas turbines

Group. After the project is put into operation in 2023, two gas turbines will be used

10% (by volume) hydrogen mixing ratio with day

Combined combustion of natural gas.

Scientific planning of hydrogen energy development path, increase the hydrogen energy industry chain

Research and development of key materials and key technologies in each link

The current technology is independent and controllable, which greatly reduces the cost of hydrogen energy use

It is the only way for China to move towards a zero-carbon future. In addition, in

China should also large-scale development of new energy generation of hydrogen, play

Green hydrogen fast power regulation characteristics and long period energy storage characteristics,

Cut the peak and smooth the valley for the power system


  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module
  • Kollmorgen S64001 - Servo Drive
  • Kollmorgen CR03200-000000 - Servo Drive
  • Kollmorgen 6SM57M-3000+G - Servo Motor
  • Kollmorgen BDS4 - Servo Drive
  • Kollmorgen AKD-P00306-NBEC-000 - Servo Drive
  • Kollmorgen AKD-B01206-NBAN-0000 - Servo Drive
  • Kollmorgen STP-57D301 - Stepper Motor
  • Kollmorgen 6SM37L-4.000 - Servo Motor
  • Kollmorgen 44-10193-001 - Circuit Board
  • Kollmorgen PRDR9SP24SHA-12 - Board
  • Kollmorgen PRD-AMPE25EA-00 - Servo Drive
  • Kollmorgen DBL3N00130-0R2-000-S40 - Servo Motor
  • Kollmorgen S406BA-SE - Servo Drive
  • Kollmorgen AKD-P00607-NBEI-0000 - Servo Drive
  • Kollmorgen AKD-P01207-NBEC-0000 - Servo Drive
  • Kollmorgen CR03550 - Servo Drive
  • Kollmorgen VSA24-0012/1804J-20-042E - Servo Drive
  • Kollmorgen N2-AKM23D-B2C-10L-5B-4-MF1-FT1E-C0 - Actuator
  • Kollmorgen 04S-M60/12-PB - Servo Drive
  • Kollmorgen H33NLHP-LNW-NS50 - Stepper Motor
  • Kollmorgen A-78771 - Interlock Board
  • Kollmorgen AKM43E-SSSSS-06 - Servo Motor
  • Kollmorgen AKD-P00607-NBEC-0000 - Servo Drive
  • Kollmorgen E21NCHT-LNN-NS-00 - Stepper Motor
  • Kollmorgen cr10704 - Servo Drive
  • Kollmorgen d101a-93-1215-001 - Motor
  • Kollmorgen BDS4A-203J-0001-EB202B21P - Servo Drive
  • Kollmorgen MCSS23-6432-002 - Connector
  • Kollmorgen AKD-P01207-NACC-D065 - Servo Drive
  • Kollmorgen CK-S200-IP-AC-TB - I/O Adapter and Connector
  • Kollmorgen CR10260 - Servo Drive
  • Kollmorgen EC3-AKM42G-C2R-70-04A-200-MP2-FC2-C0 - Actuator
  • Kollmorgen BDS5A-206-01010-205B2-030 - Servo Drive
  • Kollmorgen s2350-vts - Servo Drive
  • Kollmorgen AKM24D-ANC2DB-00 - Servo Motor
  • Kollmorgen E31NCHT-LNN-NS-01 - Stepper Motor
  • Kollmorgen PRD-0051AMPF-Y0 - Servo Board
  • Kollmorgen TB03500 - Module
  • Kollmorgen 60WKS-M240/06-PB - Servo Drive
  • Kollmorgen M21NRXC-LNN-NS-00 - Stepper Motor
  • Kollmorgen H-344H-0212 - Servo Motor
  • Kollmorgen MCSS08-3232-001 - Connector
  • Kollmorgen AKM33H-ANCNC-00 - Servo Motor
  • Kollmorgen PA-2800 - Power Supply
  • Kollmorgen MTC308C1-R1C1 - Servo Motor
  • Kollmorgen PRDR0091300Z-00 - Capacitor Board
  • Kollmorgen BDS4A-206J-0024/01502D79 - Servo Drive
  • Kollmorgen S20330-VTS - Servo Drive
  • Kollmorgen S20250-CNS - Servo Drive
  • Kollmorgen SBD2-20-1105-WO - Servo Drive Board
  • Kollmorgen M405-C-A1--E1 - Servo Motor
  • Kollmorgen PRD-PB805EDD-00 - Servo Drive
  • Kollmorgen 6SM57S-3.000-J-09-HA-IN - Servo Motor
  • Kollmorgen AKM33H-ANCNDA-00 - Servo Motor
  • Kollmorgen PCB-00030200-04 - PCB
  • Kollmorgen H22SSLB-LNN-NS-02 - Stepper Motor
  • Kollmorgen BJRL-20012-110001 - Module
  • Kollmorgen BDS4A-206J-0001404A - Servo Drive
  • Kollmorgen H-342-H-0802 - Servo Motor
  • Kollmorgen CR10561 - Servo Drive
  • Kollmorgen BDS5A-206-00010-205B2-030 - Servo Drive
  • Kollmorgen BDS5A-206-00010-207B-2-030 - Servo Drive
  • Kollmorgen mcss08-3224-001 - Connector
  • Kollmorgen M-207-B-23-B3 - Servo Motor
  • Kollmorgen PRD-0041200Z-S0 - Encoder/Resolver Card
  • Kollmorgen MH-225-G-61 - Motor
  • Kollmorgen MT308B1-T1C1 - Servo Motor
  • Kollmorgen BDS4A-240J-0001604C83 - Servo Drive
  • Kollmorgen 6SM57-S-3000 - Servo Motor
  • Kollmorgen N-T31V-15-5B-6-MF3-FT1E-C251 - Actuator
  • Kollmorgen PRD-0051AMPA-X0 - Servo Board
  • Kollmorgen CF-SS-RHGE-09 - Cable
  • Kollmorgen DIGIFAS7204 - Servo Drive
  • Kollmorgen S30101-NA - Servo Drive