Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Woodward 2301A 9907 series electronic load distribution and speed controller

来源: | 作者:FAN | 发布时间 :2025-09-03 | 406 次浏览: | Share:

Woodward 2301A 9907 series electronic load distribution and speed controller

Product basic information

1. Core functions and positioning

Core function: Simultaneously achieve two major functions of speed control and load distribution - speed control maintains stable speed of the prime mover (engine/turbine), load distribution ensures proportional load sharing when multiple units are connected in parallel, avoiding single unit overload or uneven load.

Control mode:

Synchronous mode (Isochronous): suitable for single unit operation or multi unit isolated bus parallel connection, maintaining constant speed, requiring automatic power transmission (APTL), import and export control and other load adjustment accessories.

Droop mode: suitable for parallel connection of units to an infinite power grid or with non compatible governor units. The speed decreases with increasing load, and the droop rate can be adjusted through a potentiometer (formula:% droop=(no-load speed - full load speed)/no-load speed x 100).

2. Model and Key Parameters

(1) Model classification (9907 series)

The differences between different models are reflected in the actuator current, action direction, voltage level, and deceleration ramp function. The core parameters are shown in the table below:

Model actuator current action direction voltage level deceleration ramp

9907-020 0-200mA positive high voltage none

9907-021 0-200mA Reverse High Voltage None

9907-238 0-200mA positive low voltage none

9907-239 0-200mA Reverse Low Voltage None

9903-327 0-200mA Reverse Low Voltage None

Forward/Reverse Action: During forward action, the increase in actuator voltage corresponds to an increase in fuel/steam; When reversing the action, the decrease in voltage corresponds to an increase in fuel/steam (default to full fuel when power is off, compatible with mechanical backup governor).

Voltage level: Low voltage type (18-40VDC), high voltage type (90-150VDC or 88-132VAC), to be matched according to the system power supply.

(2) Key technical parameters

Speed range: Select four frequency ranges (500-1500Hz, 1000-3000Hz, 2000-6000Hz, 4000-12000Hz) through switch S1. The factory default is 2000-6000Hz, which needs to be matched based on the rated speed of the prime mover and the number of teeth on the speed measuring gear (formula: sensor frequency=number of teeth on the gear x speed (rpm)/60).

Actuators and sensors: support 0-200mA actuator output; Speed measurement requires the use of a magneto electric sensor (magnetic head), with a minimum signal requirement of 1.0Vrms (starting speed) and a maximum of 25Vrms (rated speed). The gap between the sensor and the gear should be controlled between 0.25-1.0mm.

Installation specifications and wiring

1. Installation environment and location requirements

Environmental conditions: working temperature -40-85 ℃ (-40-185 ℉), relative humidity 10% -95% (no condensation); Avoid direct contact with water, vibration sources, and strong electromagnetic interference equipment (such as high-voltage cabinets and high current cables).

Installation restrictions: It is prohibited to install directly on the engine; Reserved heat dissipation space is required (with a ventilation gap of ≥ 3cm and a distance of ≥ 15cm from heating components), and a vertical installation inclination angle of ≤± 45 ° (when there is no forced ventilation).

2. Electrical wiring and shielding requirements

(1) Core interface wiring

The controller terminals are concentrated on the front panel, and the key interfaces and wiring requirements are as follows:

Interface type, terminal number, wiring requirements, precautions

Low voltage power input type (15-, 16+); High voltage type (0, 16) low voltage: 18-40VDC; High voltage: 90-150VDC/88-132VAC requires installation of XT-FIL-1/2 anti-interference filter (mandatory in maritime scenarios); Terminal creepage distance ≥ 6.5mm (compliant with the EU Low Voltage Directive)

Speed sensors 28 (signal+), 29 (signal -), and 27 (shielded) use shielded twisted pair cables. Only one end of the shielding layer is connected to terminal 27, and the other end is suspended with an insulation sensor gap of 0.25-1.0mm. The radial runout of the gear is ≤ 0.5mm

The output of the actuator is 20 (+), 21 (-), and 22 (shielding), and the shielding layer is only connected to terminal 22. It is forbidden to connect the actuator or other grounded actuators. The coil resistance is about 35 Ω, and open/short circuits need to be checked

Load sensor (CT/PT) CT (4-9), PT (1-3) CT secondary output 3-7A (rated 5A), PT secondary 100-120VAC/200-240VAC CT open circuit will generate high voltage, short circuit or power off before wiring

Load distribution lines 10 (+), 11 (-), and 12 (shielded) are shielded twisted pair cables. When multiple units are connected in parallel, the shielding layer is continuously connected without the need for additional relays. The controller is equipped with a built-in load distribution relay

(2) Shielding and anti-interference

All signal cables (speed measurement, actuator, load distribution lines) must use shielded twisted pair cables, with the shielding layer only grounded at the controller end (terminals 22, 27, 12) and the other end suspended to avoid the formation of ground current.

Strong current cables (power supply, CT/PT) should be wired separately from signal cables to avoid parallel laying; Severe electromagnetic interference scenarios require the use of metal conduits or double shielded cables.

3. Installation inspection process

Mechanical inspection: The actuator and the connecting rod of the prime mover are not loose/stuck, and the actuator lever does not touch the mechanical limit when the fuel is at its minimum position (to prevent the inability to stop the machine).

Wiring inspection: Check the power polarity, CT/PT phase, terminals are not loose, and the shielding layer is connected correctly according to the wiring diagram.

Sensor inspection: The gap between the magnetic head and the gear is 0.25-1.0mm, and there are no metal debris; Measure the sensor resistance (100-300 Ω) before powering on to determine if there is an open/short circuit.

Operation and debugging process

1. Initial settings before startup

All potentiometers must be pre-set according to the following requirements to avoid overload or overspeed during startup:

Initial setting function of potentiometer

Rated speed minimum (counterclockwise to the bottom) to avoid excessive speed during startup

Reset the middle position to adjust the speed and restore the speed

Speed stability when adjusting load changes in the middle position of gain (GAIN)

Ramp TIME (clockwise to the end) extends the acceleration time to prevent overspeed during startup

Low IDLE SPEED Maximum (clockwise to the bottom) ensures stable idle after starting

Adjust the load distribution ratio in the middle position of the load gain (LOAD GAIN)

DROOP Minimum (counterclockwise to the bottom) Initial default synchronization mode

ACTUATOR COMPENSATION for diesel/gas engines: 2; Gasoline engine/turbine: 6 compensating actuator response delays

Start Fuel Limit Maximum (clockwise to the bottom) to prevent excessive fuel smoke during startup

2. Startup and dynamic debugging

(1) Startup steps

Close the "rated speed" contact (terminal 19), close the droop contact (terminal 14), and set to synchronous mode.

Connect the power to the controller and calibrate the speed using a signal generator: Connect terminals 28-29, set the rated frequency, and slowly adjust the "rated speed" potentiometer to stabilize the actuator voltage at the intermediate value (not maximum/minimum).

Start the prime mover and observe if the speed is stable. If there is a rapid fluctuation (hunting), decrease the "gain" counterclockwise; If there is a slow fluctuation, increase the "reset" clockwise.

(2) Key parameter calibration

Low idle adjustment: Disconnect the "rated speed" contact (terminal 19) and adjust the "low idle" potentiometer counterclockwise to the recommended idle speed (higher than the fuel mechanical limit speed).

Load gain calibration: When a single unit is running synchronously, load to full load and adjust the "load gain" potentiometer to make the voltage between terminals 11 (-) and 13 (+) 6.0V (3.0V at half load, proportionally adjusted).

Sag adjustment:

Isolated load: Disconnect the droop contact, adjust the rated speed under no-load, and adjust the "droop" potentiometer to the target droop rate under full load (e.g. 5% droop corresponds to 60Hz no-load → 57Hz full load).

Grid parallel connection: calculate the full load frequency (rated frequency × (1+droop rate)), set the frequency at no-load, close the circuit breaker and then adjust "droop" and "load gain" to full load.

3. Parallel operation debugging

When multiple units are connected in parallel, the following conditions must be met:

All units have the same no-load speed (synchronous mode).

The load gain voltage is consistent (full load 6.0V).

CT/PT phase consistency: Ensure the CT wiring phase is correct and avoid circulating current through the "phase correction process" (see pages 23-25 of the manual).

Load distribution line connection: All units have 10 (+) and 11 (-) terminals connected in parallel, and the shielding layer is continuously grounded.


Troubleshooting and Maintenance

1. Common fault handling

The manual provides a detailed troubleshooting table, and the core faults and solutions are as follows:

Possible causes and solutions for the fault phenomenon

The prime mover cannot start, the actuator does not operate, and the polarity of the power supply is reversed/there is no voltage; The fuel limit for starting is too low; Check the polarity and voltage of the power supply when the speed signal is not cleared and the fault circuit is not cleared; Turn up the 'Start Fuel Limit' clockwise; Short circuit terminals 18-16 (temporary shielding fault signal)

Overspeed/smoking ramp time too short during startup; The rated speed is set too high; Turn up the "ramp time" clockwise when the fuel restriction is not in effect; Reduce the 'rated speed' counterclockwise; Delay starting for 1 second after power on (ensure fuel restriction is activated)

Uneven load distribution and differences in no-load speed of units; Inconsistent load gain voltage; CT phase error calibration of all units' no-load speed; Unified load gain voltage to 6.0V (full load); Re execute CT phase correction

Unstable speed (fluctuation), high gain/low reset; Improper compensation of the actuator; If the sensor gap is too large, decrease the gain counterclockwise/increase it clockwise to reset; Fine tune the 'actuator compensation'; Adjust the sensor gap to 0.25-1.0mm

Speed signal fault sensor open/short circuit; Poor shielding; Gear wear measurement sensor resistance (100-300 Ω); Check the connection of the shielding layer; Replace the gear (radial runout ≤ 0.5mm)

2. Maintenance and safety precautions

Daily maintenance: Check the tightness of the wiring terminals and the gap between sensors every month; Clean the controller panel quarterly (use a dry soft cloth, do not use solvents or sharp tools).

Static electricity protection: Before touching the circuit board, static electricity must be released (touching grounded metal); Do not touch PCB components or pins with your hands. When replacing the PCB, use anti-static bags for packaging.

Repair restriction: Self opening repair is prohibited, please contact Woodward authorized service center; When returning for repair, it is necessary to label the model, serial number, and fault description, and use the original factory packaging.


Key safety warning

Overspeed risk: The prime mover must be equipped with an independent overspeed shutdown device (independent of the controller) to prevent equipment damage or personnel injury caused by uncontrolled speed.

High voltage hazard: CT open circuit can generate fatal high voltage. When wiring or maintenance, it is necessary to short-circuit the CT terminal or cut off the power first; The terminal voltage of the high-voltage controller should be ≥ 88VAC, and insulated gloves should be worn for operation.

Static damage: Electronic components are sensitive to static electricity, and anti-static packaging should be used during transportation and installation. Plastic and vinyl materials are prohibited from contacting PCBs.

Emergency shutdown: Emergency shutdown measures should be prepared during startup. If abnormal actuator action or speed limit is found, the power supply should be immediately cut off.

  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • RELIANCE 0-57170 Industrial Drive System Component
  • Reliance Electric S-D4030-A Remote I/O Head Module
  • RELIANCE 0-57406-E Industrial Control Module
  • RELIANCE 57401-2 Control Interface Module
  • RELIANCE 57421 Electrical Control Component
  • Reliance Electric 57401 Remote I/O Head Module
  • RELIANCE S-D4007 Industrial Control Module
  • ABB SACO16D1-AA Digital Annunciator Unit
  • RELIANCE 803.65.00 Control Board for Industrial Systems
  • Reliance Electric 57C404C AutoMax Processor Module
  • RELIANCE 0-57C411-2 Industrial Control Module
  • RELIANCE 0-57C408-B Heavy-Duty Industrial AC Motor
  • Reliance Electric 0-57C406-E AutoMax Power Supply Module
  • RELIANCE 0-57C407-4H Industrial Control Module
  • RELIANCE 0-57C405-C Industrial Duty AC Electric Motor
  • Reliance Electric 0-57C404-1E AutoMax Processor Module
  • RELIANCE 0-57C402-C Drive Control Module
  • RELIANCE 0-57C400-A High-Performance Industrial AC Motor
  • Reliance Electric 0-51378-25 Digital Interface Board
  • RELIANCE S-D4041B Drive Control Module
  • RELIANCE INSPECTOR VCIB-06 Vibration Calibration Instrument
  • Reliance Electric S-D4043C Remote I/O Head Module
  • RELIANCE S-D4012 Drive Control Module
  • Reliance Electric 805401-5R Printed Circuit Board
  • RELIANCE ELECTRIC 0-60029-1 Drive Control Module
  • REXROTH VT-HNC100-1-23/W-08-C-0 Digital Axis Control
  • REXROTH VT-HNC100-4-3X/P-I-00/G04 Digital Axis Controller
  • REXRTOH VEP40.3CEN-256NN-MAD-128-NN-FW Industrial Embedded PC
  • Rexroth 0608820116 ErgoSpin CC-AS300-070 Tightening Tool
  • REXROTH MHD093C-058-PG1-AA Synchronous Servo Motor
  • REXRTOH VT-HNC100-1-22/W-08-C-0 Industrial Touch Monitor
  • Rexroth MSK060C-0600-NN-S1-UP1-NNNN IndraDyn S Servo Motor
  • REXRTOH VT3024 Industrial Monitor
  • Rexroth MHD041B-144-PG1-UN Synchronous Servo Motor
  • Rexroth VT-HNC100-1-23/W-08-S-0 Digital Axis Control
  • Rexroth VT-HNC100-1-23/M-08-P-0 Controller
  • REXRTOH VT-HNC100-1-22/W-08-0-0 | Hydraulic Valve Block Assembly
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth MHD095C-058-NG1-RN Hydraulic Motor
  • Rexroth 4WE6Y62/EG24N9K4 + HSZ10-26916-AA/G24N9K4M01 Assembly
  • Rexroth SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • REXRTOH BTV04.2GN-FW | Bus Terminal Valve with PROFINET
  • Rexroth BGR DKC02.3-LK SCK02/01 ECODRIVE3 Control Assembly
  • Rexroth MKD025B-144-KG1-UN Servo Motor
  • REXRTOH R901325866+R900775346+R901273425A | Drive System Component Set
  • Rexroth CSH01.1C-SE-EN2-NNN-NNN-NN-S-XP-FW Drive Controller
  • REXRTOH DDS2.1W200-D | Digital Servo Drive
  • Rexroth VT3002-2X/48F Card Holder for Proportional Amplifiers
  • Rexroth VDP40.2BIN-G4-PS-NN Proportional Valve
  • REXRTOH MSK070D-0450-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK070C-0150-NN-S1-UG0-NNNN IndraDyn S Servo Motor
  • Rexroth MSK050C-0600-NN-M1-UP1-NSNN Servo Motor
  • Rexroth MSK030C-0900-NN-M1-UP1-NSNN Servo Motor
  • Rexroth TV 3000HT PUMF Hydraulic Pump Module
  • REXRTOH R911259395 | Drive System Control Module
  • Rexroth VT-VSPA1-1-11 Proportional Amplifier Card
  • Rexroth VT3006S35R1 Proportional Valve Module
  • REXRTOH VT3006S34R5 Hydraulic Valve | Directional Control Valve
  • Rexroth VT3000S34-R5 Proportional Amplifier Card
  • Rexroth SL36 Servo Motor Controller
  • REXRTOH SE200 0608830123 | Inductive Proximity Sensor
  • Rexroth RAC 2.2-200-460-A00-W1 Main Spindle Drive Controller
  • Rexroth PSM01.1-FW Power Supply Module
  • REXRTOH PIC-6115 | Programmable Industrial Controller
  • Rexroth MDD112D-N030-N2M-130GA0 Digital AC Servo Motor
  • Rexroth HDS03.2-W075N Drive Controller Module
  • REXRTOH DKC03.3-040-7-FW Servo Drive | Digital Motion Controller
  • Rexroth DKC02.3-200-7-FW ECODRIVE3 Servo Drive Controller
  • Rexroth CSB01.1N-AN-ENS Control System Module
  • REXRTOH 0608830222 | Genuine Automation Component
  • Rexroth 0608830174 ErgoSpin Tightening System Control Module
  • Rexroth 0608820103 Industrial Hydraulic Control Component
  • REXRTOH 0608820069 Industrial Automation Component
  • Rexroth 0608800048 ErgoSpin Tightening System Control Module
  • Rexroth 0608801006 Industrial Hydraulic Control Component
  • REXRTOH SYHNC100-NIB-24-P-D-E23-A012 Encoder | Synchronous Serial Interface
  • Rexroth 0608720040 ErgoSpin Tightening System Control Module
  • REXRTOH SYHNC100-NIB-2X/W-24-P-D-E23-A012 Controller
  • ABB CP555 1SBP260179R1001 HMI Operator Terminal
  • HIMA K9212 Fan Assembly | Safety System Cooling Unit
  • WATLOW CLS208 Digital Temperature Controller
  • Watlow CLS2163C1-110200000-CLS204204-C10000AA-CLS208208-C10000AE Multi-Loop PID Controllers
  • WATLOW PPC-TB50 Power Controller
  • WATLOW PPC-TB50 30280-00 Temperature Controller
  • Watlow NLS300-CIM316 Communication Interface Module
  • WATLOW MLS300 Limit Controller
  • WATLOW CAS 16CLS/CAS Temperature Controller
  • Watlow CAS200 CLS216 16-Loop Thermal Controller Module
  • WATLOW CLS208 C10000CP Power Controller
  • WATLOW ANAFAZE LLS200212 CLS208 Temperature Control System
  • Watlow ANAFZE PPC-TB50 CLS208 Multi-Loop Controller
  • WATLOW ANAFZE 997D-11CC-JURG Power Controller
  • WATLOW ANAFAZE PPC-TB50 Temperature Controller
  • ABB SUE3000 1VCF750090R0804 High-Speed Transfer Device
  • ABB TET106 11355-0-6050000 Temperature Module
  • ABB PPD512 A10-15000 Power Panel Display
  • ABB PPD113B01 3BHE023784R1023 AC 800PEC Control Module
  • ABB PFEA113-65 Tension Controller 3BSE050092R65
  • ABB PFEA112-20 3BSE050091R20 Fieldbus Adapter Module
  • ABB PFEA111-65 3BSE050091R65 Tension Electronics PFEA111
  • ABB PFEA111-65 Tension Controller 3BSE050090R65
  • ABB PDD500A101 Operator Display Panel | Industrial HMI Interface
  • ABB KP2500 Process Control System Controller
  • ABB CP405 A0 Operator Panel 1SAP500405R0001
  • ABB AX411/50001 Digital Input Module
  • ABB 500TRM02 1MRB150011R1 Procontrol P13 Bus Terminal Module
  • ABB 500TTM02 Temperature Module 1MB150021R0116
  • ABB 500TRM02 1MRB150011R0001 Terminating Resistor Module
  • ABB 500SCM01 1MRE450004R1 Control Module
  • ABB 500SCM01 1MRB200059/C 1MRB150044R0001 Station Control Module
  • ABB 500SCM01 1MRB150004R00011MRB200059/C Control Module
  • ABB 500PSM03 1MRB 150038 R1 894-030375D 136-011100H Power System Module
  • ABB 500PSM03 1MRB150038 R1 894-030375D 136-011100H Power Supply Module
  • ABB 500PSM02 1MRB150015R1 AD-272.100.20-01 AZ:C Power Supply Module
  • ABB 500PB101 1MRB178009R00011MRB200064/C Power Supply Module
  • ABB 500MTM02 1MRK001967-AA 1HDF 930512 X010 Module
  • ABB 500MTM02 1MRB150020R1102 1HDF 930512 X010 Motor Module
  • ABB 500MTM02 1MRB150020R0712 Touch Module
  • ABB 500MBA02 1MRB150003R0003 1MRB200053/M Bus Coupling Module
  • ABB 500MBA01 1MRB150003R00021MRB200053/L Motor Control Module
  • ABB 500MBA02 1MRB150003R000/B Analog Output Module