Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The main problems and solutions of mine ecological restoration

来源: | 作者:佚名 | 发布时间 :2023-11-27 | 506 次浏览: | Share:

1.3 There are misunderstandings in the field of mine ecological restoration engineering

The large-scale development of mine ecological restoration project makes the construction team of different good and bad pour into the field of mine ecological restoration. Related engineering construction teams lack systematic, holistic and scientific understanding of mine ecological restoration, coupled with insufficient knowledge reserve and limited technical level, some people think that mine ecological restoration projects are earthworks of digging MATS. For example, they think that covering exposed rocks with soil and filling in subsidence pits is simple and arbitrary, and many cases of failure after restoration are reported. The phenomenon of "one year green, two years yellow, and three years dead" often occurs. If the soil reconstruction is ignored in the process of filling or covering, the water-soil-vegetation will not form a good circulation body, and the vegetation will not live without water and nutrition, and it will be exposed again after 1 to 2 years. When modifying slopes such as dump and stope, if the principle of imitating natural landform is not scientifically applied and the slope is not integrated with the local natural environment, the maintenance cost will be high, and the long-term stability will be poor, resulting in more serious soil erosion and landscape fragmentation [4]. For example, when acid gangue mountain is controlled, fire suppression is not allowed, fire prevention measures are not in place, and the reignition rate is as high as 50%. Figure 1 shows the difference of the landform remodeled into nature in the opencast mine dump. Therefore, the mine ecological restoration project needs scientific and technical support.

1.4 Difficulties in popularizing and applying new technologies

After more than 40 years of practice and research, the majority of scientific researchers have developed a variety of ecological restoration technologies, but the promotion and application of new technologies are limited. At present, China's mine ecological restoration mainly depends on government investment, especially the old account problem, and the social investment is little, so the funds are limited. And some new technologies in order to achieve better repair results, the cost will be increased. For example, compared with soil reconstruction technology, extensive one-time excavation and filling and "layered stripping and staggered backfilling" according to the needs of vegetation growth, the latter investment is slightly larger, and the application enthusiasm of construction enterprises is not high. Another example is the mining side recovery technology of coal mining subsidence, because it is constructed when the ground is not stable, it needs to reserve the subsequent subsidence elevation, which means that the ground is not smooth during the project acceptance and can not meet the traditional acceptance requirements. Construction enterprises and local governments are reluctant to use this technology, and the resulting loss of soil resources is very helpless. Therefore, it is very important to promote the promotion of new technologies, and it is necessary for managers and builders of mine ecological restoration to change their thinking and achieve breakthroughs in investment and policies.

2. Countermeasures for mine ecological restoration in China

2.1 Principles to be followed for mine ecological restoration

Mine ecological restoration is not only the restoration of damaged terrain, simple greening and so on. Mine ecological restoration is a systematic project, which is a complex project integrating damage investigation, design planning and construction. In order to achieve the result of restoring the damaged ecology, it is necessary to have a deep understanding of the connotation of the restoration goal. At the beginning of the planning, it is necessary to clarify the use of land use after restoration, the ecological structure and the ecological function that should be realized. Therefore, the goal setting of mine ecological restoration needs to comply with the following six principles: respect for nature, people-oriented; Adapt to local conditions and conform to the overall regional planning; Safe, efficient and sustainable use; Priority should be given to ecological and environmental benefits, and attention should be paid to economic benefits. Priority is given to restoring cultivated land, grassland and forest land; End treatment is combined with source and process control.

2.2 Strengthen the basic research of mine ecological restoration

The practice of mine ecological restoration for more than 40 years shows that the restoration theory lags far behind the practice, and many restoration cases fail due to lack of scientific restoration, which shows that there is a decoupling phenomenon between theory and practice. In order to repair the ecological environment damage caused by mining, many places have carried out spontaneous restoration and utilization of the damaged land and ecological environment. For densely populated areas with rapid economic development, mine ecological restoration is often promoted faster. However, the basic theory of this field and the principles of restoration technology still need to be deeply studied to support and promote the development of this field.

  • WESTINGHOUSE 1C31201G01 PLC Module
  • WESTINGHOUSE 5X00226G01 Ovation Analog Output
  • Westinghouse 5X00501G01 Automation Controller Module
  • Westinghouse 1C31233G02 Signal Conditioning Module
  • WESTINGHOUSE 5X00357G03 PLC Module
  • WESTINGHOUSE 5X00301G01 Ovation Module
  • Westinghouse 5X00300G02 Industrial Controller
  • WESTINGHOUSE 5X00481G04 PLC Module
  • WESTINGHOUSE 5X00499G01 Ovation Module
  • Westinghouse 5X00583G01 Control Module
  • WESTINGHOUSE 5X00497G01 PLC Module
  • WESTINGHOUSE 1C31233G01 Ovation Module
  • WESTINGHOUSE 4D33900G19 Industrial Control Module
  • Westinghouse 5X00225G01 Controller Base Rack for Industrial Automation
  • WESTINGHOUSE 5A26304G02 Ovation I/O Module
  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module
  • WESTINGHOUSE 5X00119G01 Ovation Module
  • Westinghouse 5X00105G14 Control Module
  • WESTINGHOUSE 5X00105G01 Ovation System Base Module
  • WESTINGHOUSE 5X00058G01 Ovation Controller
  • Westinghouse 5A26391H24 Control Module
  • WESTINGHOUSE 4D33942G01 Ovation I/O Communication Module
  • WESTINGHOUSE 3A99158G01 Ovation I/O Module
  • WESTINGHOUSE 3A99200G01 Control Module
  • WESTINGHOUSE 3A99132G02 Ovation System Power Module
  • WESTINGHOUSE 3A99132G01 Ovation Interface Module
  • WESTINGHOUSE 1X00416H01 Control Module
  • WESTINGHOUSE 1X00024H01 Ovation System Interface Module
  • WESTINGHOUSE 1C31227G02 Ovation I/O Module
  • Westinghouse 1C31194G03 Control Module
  • WESTINGHOUSE 1C31194G02 Ovation Controller Module
  • WESTINGHOUSE 1C31194G01 Ovation Controller Module
  • WESTINGHOUSE 1C31189G01 Control I O Module
  • WESTINGHOUSE 1C31179G02 Ovation Processor Module
  • WESTINGHOUSE 1C31164G02 Ovation Relay Output Module
  • Westinghouse 1C31161G02 RTD Input Module
  • WESTINGHOUSE 1C31150G01 Ovation DCS I/O Controller Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1C31129G03 Control Module
  • WESTINGHOUSE 1C31122G01 Process Controller | Ovation DCS Control Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1B30023H02 Control Module
  • WESTINGHOUSE 1B30035H01 Turbine Control System Module
  • WIDAP UFW30.156 6K8J175W0823 Power Resistor Technical Profile
  • WINGREEN IPB PCB V2.0_A01 03ZSTL6-00-201-RS Industrial Power Board
  • WINGREEN CANopen_ADAPTER V5.0_A01 03ZSTI-00-501-RS Module
  • WINGREEN PUIM V2.0 034STM4-00-200-RS Power Interface Module
  • WINGREEN DUDT_DETECTION_V2.0_A01 03ZSTJ0-00-201-RS Detection Control Board
  • WINGREEN LAIB V3.0_A00 034STN1-00-300-RS Embedded Industrial Motherboard
  • WINGREEN FAN_DETECTION V1.0_A05 03ZSTJ3-00-105Fan Monitoring Module
  • WINGREEN LAIB V3.0_A00 034STN1-01-300-RS Interface Board
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-00-501 Industrial Control Keyboard Module
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-01-501 Industrial Motherboard | Embedded Control Board
  • WINGREEN FPB_V3.0_A01 03ZSTJ1-00-301-RS Fieldbus Processor
  • WINGREEN DSPB_V4.0_A02 03ZSTI7-00-402-RS Digital Processing Board
  • WOHNER 31110 Cylindrical Fuse Holder
  • WOODHEAD APPLICOM PCI4000 PCI Communication Card Industrial DeviceNet CAN Bus Interface
  • Woodward 8440-1706 Industrial Control System Module
  • Woodward 8440-2052 H Synchronizer Load Share Module
  • Baldor KPD-TS12C-30E 12.1" Color TFT Touch Screen Ethernet HMI
  • Baldor KPD-TS10C-30E 10" Color TFT Touch Screen Operator Interface with Serial and Ethernet Interfaces
  • Baldor KPD-TS05C-30E 5.6" Color TFT Touch Screen with Serial and Ethernet Interface
  • Baldor KPD-TS05C-30 5.6 Inch Color TFT Touch Screen Serial Interface
  • Baldor KPD-TS05M-10 5.6" Monochrome Touch Screen Serial Interface HMI
  • Baldor KPD-TS03M-10 Monochrome Touch Screen Operator Interface
  • Baldor KPD-KG420-30 4x20 Graphic Display with 12 Function Keys - Serial Interface
  • Baldor KPD-KG420-20 4x20 Character Graphic Display Serial Interface
  • WOODWARD EASYGEN-3200-5 8440-1992 A Genset Controller
  • WOODWARD PEAK200-HVAC 8200-1501 C Version | Industrial Building Automation Controller
  • Woodward 8440-2052 easyGEN-3200 Genset Control Power Management
  • Woodward 8237-1246 + 5437-1119 Control System Module
  • WOODWARD SPM-D11 8440-1703 Overspeed Protection System Module
  • WOODWARD 8237-1369 Governor Control Module
  • Woodward 8237-1600 Digital Control Module
  • WOODWARD BUM60-1224-54-B-001-VC-A0-0093-0013-G003-0000 3522-1004 Industrial Control Module
  • WOODWARD 8200-1302 Genset Controller
  • Woodward 8901-457 Speed Control Module
  • WOODWARD 5501-465 Control Module
  • Woodward 5448-890 SPM-D10 Digital Control Module
  • WOODWARD 5437-1067A Turbine Governor Actuator
  • Woodward 8440-1666 B Digital Control Module
  • WOODWARD 8440-1706 A SPM-D11 Synchronous Phase Modulator Module
  • WOODWARD 5466-425 Programmable Automation Controller (PAC)
  • WOODWARD 5466-318- Industrial Gas Turbine Control Module
  • WOODWARD 5453-277 Digital Control Module
  • WOODWARD 5453-203 Digital Governor Control Module
  • WOODWARD 9907-1106 Pressure Converter
  • WOODWARD 5233-2089 Professional Industrial Control System Module
  • WOODWARD 9907-147 Power outage tripping overspeed protection system
  • WOODWARD 8237-1600 Digital Speed Control System
  • WOODWARD 8402-319 8402-119 microprocessor speed controller
  • Woodward 8237-1006 Digital Governor
  • WOODWARD 5501-471 Communication Module
  • WOODWARD 5466-258 Input/Output Module
  • WOODWARD 5501-467 Multi Protocol Communication Gateway and I/O Expansion Module
  • WOODWARD 5501-470 Digital microprocessor controller module
  • WOODWARD 9907-1200 Digital Governor
  • WOODWARD 8444-1067 High Performance Digital Microprocessor Controller Module
  • WOODWARD 8446-1019 Integrated Gas Engine Electronic Control System
  • WOODWARD 9907-162 Digital Engine Governor
  • WOODWARD 5466-316 Simulation Combination Module
  • WOODWARD 5464-414 Digital Speaker Sensor Module
  • XANTREX XFR40-70 DC power supply
  • XP POWER F8B6A4A6A6 power module
  • XP POWER F8B6D4A3G3 power supply
  • XYCOM XVME-674 VMEbus Single Slot CPU/Processor Module
  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor