Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What is the principle of thermal power generation

来源: | 作者:佚名 | 发布时间 :2023-12-01 | 1170 次浏览: | Share:

Step 4: Features

Thermal power plant is the process of converting chemical energy such as coal and fuel oil into electric energy through combustion. In addition to the characteristics of general electric energy production, thermal power plants have their own characteristics and requirements.

1. Must be safe and reliable production

Modern thermal power plants have high temperature (flame center temperature up to 1500 ~ 1700℃, steam temperature up to 600℃), high pressure (main feed water pressure up to 30MPa or higher), high speed (steam turbine speed 3000r/min, feed water pump speed 6000r/min), high voltage (generator voltage 35kV, high voltage, high voltage, high voltage, high voltage, high voltage, high voltage, high voltage, high voltage, high voltage, high voltage, high voltage, high temperature, high temperature, high temperature, high temperature, high temperature. Bus voltage 110kV), so the production process must adhere to the "safety first" policy. It is necessary to implement comprehensive safety management in all aspects from planning and design, equipment manufacturing, construction, production, operation and maintenance to training. At the same time, advanced equipment and means should be used to improve the safety of equipment. The operation relationship between the machine, the furnace and the electricity of the modern large-capacity reheat unit is complex, which should generally have the conditions of self-start and stop, and have the functions of perfect locking protection, over-limit protection, automatic shutdown, etc. The power grid should adopt the automatic frequency control and power automatic control device.

At the same time of safe production, thermal power plants must also have high reliability, so as to give full play to the potential of power supply equipment, ensure uninterrupted power supply and ensure the quality of power supply to users, and give full play to the economic benefits of the power system.

2. Strive for high economy

Thermal power plants are technology and capital intensive enterprises, the construction of thermal power plants, especially large power plants to consume a lot of manpower, material and financial resources, the current construction of a 4×600MW power plant, the need for investment of more than 6 billion yuan. Therefore, while ensuring safe and reliable production, we should strive to have a high economy in order to recover the investment as soon as possible. Thermal power plant power generation at the same time, its own is also a large energy consumption, a 2×600MW condenser power plant at full load will consume nearly 10,000 tons of coal per day, if every 1kW·h electricity saving coal consumption 1g, then a 1200MW power plant will save more than 8000 tons of standard coal per year, it can be seen that its energy saving potential is great. In order to reduce coal consumption and improve efficiency, in addition to the use of high-parameter, large-capacity units, the use of new processes, new materials in equipment manufacturing, the use of more reasonable thermal systems, an important aspect is to minimize the depreciation of energy in operation, reduce all kinds of unnecessary losses and waste. This requires the power plant to strengthen management, and constantly improve the technical level and responsibility of the operators. In recent years, computer energy loss on-line monitoring system and real-time loss analysis have achieved good results in energy saving and consumption reduction.

3. Continuously improve the degree of automation

With the improvement of the parameters and capacity of the unit, the structure and system structure of the equipment are becoming more and more complex, and the conventional way to monitor the operation of the unit based on the operator is becoming more and more difficult. A 200MW unit has 600 monitoring projects and 200 alarm projects, and it is difficult to ensure the safe and economic operation of the unit only by the operator's monitoring operation. Therefore, continuously improving the degree of automation is not only the need for safe and economic operation, but also the need to improve the working conditions of operators and improve productivity. At present, large units are equipped with automatic monitoring and control systems, and electronic computer technology has been introduced at home and abroad to achieve a series of functions such as data collection and processing, CRT screen display, tabulation and printing, accident recall, unit performance calculation and automatic control of operation.

4. Do a good job of environmental protection

Thermal power plants pollute the environment in many ways. First of all, the flue gas emitted by the boiler contains a lot of dust and nitrogen oxide, sulfur oxide and other harmful gases, of which dust will pollute the air, harmful to health, sulfur oxide (SOx) will form acid rain, nitrogen oxide (NOx) is harmful to crop growth and human health of the gas. Secondly, the slag discharged from the lower part of the furnace after coal combustion, as well as the ash discharged from the lower part of the dust collector and the tail of the flue, if it is discharged into rivers and lakes without proper treatment, it will also cause serious pollution. In addition, the noise generated by power plants and the circulating water discharged into rivers and lakes will produce certain pollution. These are to take certain measures to control and prevent.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card