Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Due to the impact of climate, hydropower generation has decreased slightly

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 428 次浏览: | Share:

I. Hydropower has a long history of development and a complete industrial chain

Hydropower is a renewable energy technology that uses the kinetic energy of water flow to generate electricity. It is a widely used clean energy source with many advantages, such as renewability, low emissions, stability and controllability. The working principle of hydropower is based on a simple concept: the kinetic energy of the water flow is used to turn a turbine, which in turn turns a generator to produce electricity. The steps of hydroelectric power generation are: to divert water from a reservoir or river, there needs to be a source of water, usually a reservoir (artificial reservoir) or a natural river, which provides power; Water flow is directed through a diversion channel to the blades of a turbine. Diversion channels can control the flow of water to adjust the capacity of power generation; The turbine runs, and water hits the blades of the turbine, making it spin. Turbines are similar to wind turbines in wind power generation; The generator generates electricity, and the operation of the turbine turns the generator, which generates electricity through the principle of electromagnetic induction; Electrical energy transmission, the generated electrical energy is sent to the grid to supply urban, industrial and household electricity. There are many types of hydropower, according to different working principles and application scenarios, can be divided into river power generation, reservoir power generation, tidal and Marine power generation, small hydropower. Hydropower has multiple advantages, but there are also some disadvantages, the main advantages are: hydropower is renewable energy, hydropower depends on water cycle, so it is renewable, will not be exhausted; It is a clean energy, hydropower does not produce greenhouse gases and air pollutants, and has a small impact on the environment. With controllability, the hydropower station can be adjusted according to demand to provide reliable base load power. The main disadvantages are: large-scale hydropower projects may cause damage to the ecosystem, and social problems such as resident migration and land expropriation; Hydropower generation is limited by the availability of water resources, and drought or falling water flows can affect power generation capacity.

Hydropower, as a renewable form of energy, has a long history. Early water turbines and waterwheels: As early as the 2nd century BC, people were using water turbines and waterwheels to drive machinery such as mills and sawmills. These machines use the kinetic energy of the water flow to work. The emergence of electricity generation: In the late 19th century, people began to use hydroelectric power stations to convert water energy into electricity. The world's first commercial hydroelectric power plant was built in 1882 in Wisconsin, USA. Construction of DAMS and reservoirs: At the beginning of the 20th century, the scale of hydropower was greatly expanded with the construction of DAMS and reservoirs. Famous dam projects include the Hoover Dam in the United States and the Three Gorges Dam in China. Technological advances: Over time, hydropower technology has been continuously improved, including the introduction of turbines, hydrogenerators, and intelligent control systems, increasing the efficiency and reliability of hydropower.

Hydropower is a clean, renewable energy source with a chain spanning several key links, from water management to electricity delivery. The first link of hydropower industry chain is water resource management. This includes the scheduling, storage and distribution of water flows to ensure a steady supply of water to turbines to generate electricity. Water resource management often requires monitoring parameters such as rainfall, flow rate and water level in order to make appropriate decisions. Modern water management also focuses on sustainability to ensure that power capacity can be maintained even in extreme conditions such as drought. DAMS and reservoirs are key facilities in the hydropower industry chain. DAMS are often used to raise the water level and create pressure, which increases the kinetic energy of the water flow. Reservoirs are used to store water to ensure sufficient flow during times of peak demand. The design and construction of DAMS need to take into account geological conditions, water flow characteristics and ecological impacts to ensure safety and sustainability. Turbines are the core components in the hydropower industry chain. When water flows through the blades of a turbine, its kinetic energy is converted into mechanical energy, making the turbine spin. Turbine design and type can be selected based on water speed, flow and height to achieve the highest energy efficiency. After the turbine spins, it turns connected generators to generate electricity. Generators are the key equipment for converting mechanical energy into electrical energy. Generally, the operation principle of a generator is to induce current by rotating a magnetic field to produce alternating current. The design and capacity of the generator needs to be determined according to the power demand and water flow characteristics. The electricity produced by the generator is alternating current, which usually needs to be processed through a substation. The main functions of the substation include boosting (increasing voltage to reduce energy loss when electrical energy is delivered) and converting current types (converting alternating current to direct current or vice versa) to suit the requirements of the power delivery system. The last step is electrical energy delivery. The electricity generated by the power stations is transmitted through transmission lines to power users in urban, industrial or rural areas. Transmission lines need to be planned, designed and maintained to ensure the safe and efficient transmission of electrical energy to its destination. In some areas, electrical energy may also need to be processed again through substations to meet the needs of different voltages and frequencies.

  • WESTINGHOUSE 1C31201G01 PLC Module
  • WESTINGHOUSE 5X00226G01 Ovation Analog Output
  • Westinghouse 5X00501G01 Automation Controller Module
  • Westinghouse 1C31233G02 Signal Conditioning Module
  • WESTINGHOUSE 5X00357G03 PLC Module
  • WESTINGHOUSE 5X00301G01 Ovation Module
  • Westinghouse 5X00300G02 Industrial Controller
  • WESTINGHOUSE 5X00481G04 PLC Module
  • WESTINGHOUSE 5X00499G01 Ovation Module
  • Westinghouse 5X00583G01 Control Module
  • WESTINGHOUSE 5X00497G01 PLC Module
  • WESTINGHOUSE 1C31233G01 Ovation Module
  • WESTINGHOUSE 4D33900G19 Industrial Control Module
  • Westinghouse 5X00225G01 Controller Base Rack for Industrial Automation
  • WESTINGHOUSE 5A26304G02 Ovation I/O Module
  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module
  • WESTINGHOUSE 5X00119G01 Ovation Module
  • Westinghouse 5X00105G14 Control Module
  • WESTINGHOUSE 5X00105G01 Ovation System Base Module
  • WESTINGHOUSE 5X00058G01 Ovation Controller
  • Westinghouse 5A26391H24 Control Module
  • WESTINGHOUSE 4D33942G01 Ovation I/O Communication Module
  • WESTINGHOUSE 3A99158G01 Ovation I/O Module
  • WESTINGHOUSE 3A99200G01 Control Module
  • WESTINGHOUSE 3A99132G02 Ovation System Power Module
  • WESTINGHOUSE 3A99132G01 Ovation Interface Module
  • WESTINGHOUSE 1X00416H01 Control Module
  • WESTINGHOUSE 1X00024H01 Ovation System Interface Module
  • WESTINGHOUSE 1C31227G02 Ovation I/O Module
  • Westinghouse 1C31194G03 Control Module
  • WESTINGHOUSE 1C31194G02 Ovation Controller Module
  • WESTINGHOUSE 1C31194G01 Ovation Controller Module
  • WESTINGHOUSE 1C31189G01 Control I O Module
  • WESTINGHOUSE 1C31179G02 Ovation Processor Module
  • WESTINGHOUSE 1C31164G02 Ovation Relay Output Module
  • Westinghouse 1C31161G02 RTD Input Module
  • WESTINGHOUSE 1C31150G01 Ovation DCS I/O Controller Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1C31129G03 Control Module
  • WESTINGHOUSE 1C31122G01 Process Controller | Ovation DCS Control Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1B30023H02 Control Module
  • WESTINGHOUSE 1B30035H01 Turbine Control System Module
  • WIDAP UFW30.156 6K8J175W0823 Power Resistor Technical Profile
  • WINGREEN IPB PCB V2.0_A01 03ZSTL6-00-201-RS Industrial Power Board
  • WINGREEN CANopen_ADAPTER V5.0_A01 03ZSTI-00-501-RS Module
  • WINGREEN PUIM V2.0 034STM4-00-200-RS Power Interface Module
  • WINGREEN DUDT_DETECTION_V2.0_A01 03ZSTJ0-00-201-RS Detection Control Board
  • WINGREEN LAIB V3.0_A00 034STN1-00-300-RS Embedded Industrial Motherboard
  • WINGREEN FAN_DETECTION V1.0_A05 03ZSTJ3-00-105Fan Monitoring Module
  • WINGREEN LAIB V3.0_A00 034STN1-01-300-RS Interface Board
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-00-501 Industrial Control Keyboard Module
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-01-501 Industrial Motherboard | Embedded Control Board
  • WINGREEN FPB_V3.0_A01 03ZSTJ1-00-301-RS Fieldbus Processor
  • WINGREEN DSPB_V4.0_A02 03ZSTI7-00-402-RS Digital Processing Board
  • WOHNER 31110 Cylindrical Fuse Holder
  • WOODHEAD APPLICOM PCI4000 PCI Communication Card Industrial DeviceNet CAN Bus Interface
  • Woodward 8440-1706 Industrial Control System Module
  • Woodward 8440-2052 H Synchronizer Load Share Module
  • Baldor KPD-TS12C-30E 12.1" Color TFT Touch Screen Ethernet HMI
  • Baldor KPD-TS10C-30E 10" Color TFT Touch Screen Operator Interface with Serial and Ethernet Interfaces
  • Baldor KPD-TS05C-30E 5.6" Color TFT Touch Screen with Serial and Ethernet Interface
  • Baldor KPD-TS05C-30 5.6 Inch Color TFT Touch Screen Serial Interface
  • Baldor KPD-TS05M-10 5.6" Monochrome Touch Screen Serial Interface HMI
  • Baldor KPD-TS03M-10 Monochrome Touch Screen Operator Interface
  • Baldor KPD-KG420-30 4x20 Graphic Display with 12 Function Keys - Serial Interface
  • Baldor KPD-KG420-20 4x20 Character Graphic Display Serial Interface
  • WOODWARD EASYGEN-3200-5 8440-1992 A Genset Controller
  • WOODWARD PEAK200-HVAC 8200-1501 C Version | Industrial Building Automation Controller
  • Woodward 8440-2052 easyGEN-3200 Genset Control Power Management
  • Woodward 8237-1246 + 5437-1119 Control System Module
  • WOODWARD SPM-D11 8440-1703 Overspeed Protection System Module
  • WOODWARD 8237-1369 Governor Control Module
  • Woodward 8237-1600 Digital Control Module
  • WOODWARD BUM60-1224-54-B-001-VC-A0-0093-0013-G003-0000 3522-1004 Industrial Control Module
  • WOODWARD 8200-1302 Genset Controller
  • Woodward 8901-457 Speed Control Module
  • WOODWARD 5501-465 Control Module
  • Woodward 5448-890 SPM-D10 Digital Control Module
  • WOODWARD 5437-1067A Turbine Governor Actuator
  • Woodward 8440-1666 B Digital Control Module
  • WOODWARD 8440-1706 A SPM-D11 Synchronous Phase Modulator Module
  • WOODWARD 5466-425 Programmable Automation Controller (PAC)
  • WOODWARD 5466-318- Industrial Gas Turbine Control Module
  • WOODWARD 5453-277 Digital Control Module
  • WOODWARD 5453-203 Digital Governor Control Module
  • WOODWARD 9907-1106 Pressure Converter
  • WOODWARD 5233-2089 Professional Industrial Control System Module
  • WOODWARD 9907-147 Power outage tripping overspeed protection system
  • WOODWARD 8237-1600 Digital Speed Control System
  • WOODWARD 8402-319 8402-119 microprocessor speed controller
  • Woodward 8237-1006 Digital Governor
  • WOODWARD 5501-471 Communication Module
  • WOODWARD 5466-258 Input/Output Module
  • WOODWARD 5501-467 Multi Protocol Communication Gateway and I/O Expansion Module
  • WOODWARD 5501-470 Digital microprocessor controller module
  • WOODWARD 9907-1200 Digital Governor
  • WOODWARD 8444-1067 High Performance Digital Microprocessor Controller Module
  • WOODWARD 8446-1019 Integrated Gas Engine Electronic Control System
  • WOODWARD 9907-162 Digital Engine Governor
  • WOODWARD 5466-316 Simulation Combination Module
  • WOODWARD 5464-414 Digital Speaker Sensor Module
  • XANTREX XFR40-70 DC power supply
  • XP POWER F8B6A4A6A6 power module
  • XP POWER F8B6D4A3G3 power supply
  • XYCOM XVME-674 VMEbus Single Slot CPU/Processor Module
  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor