Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

How to install and wire Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)?

来源: | 作者:FAN | 发布时间 :2025-10-30 | 8 次浏览: | Share:


How to install and wire Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)?

Product positioning and core series

1. Core positioning

PH4/OR4 series is a special electrochemical sensor designed for different severe working conditions. Through differentiated materials (such as HF resistant glass, perfluoroelastomer), electrolyte type (polymer electrolyte, high viscosity gel) and structure (built-in RTD, pressurized design), the PH4/OR4 series can solve the measurement stability problem of ordinary sensors under strong corrosion, high temperature, high viscosity and other scenarios. At the same time, it is compatible with mainstream transmitters in Yokogawa to meet industrial reliability requirements.

2. Series models and applicable scenarios

The series includes 9 sub models, classified according to measurement parameters (pH/ORP) and adaptability to working conditions. The core differences are as follows:

Model Series Type Core Features Applicable Scenarios

PH4P/PH4PT polymer electrolyte pH sensor with built-in polymer electrolyte (including KCl), no risk of liquid leakage; PH4PT with Pt1000 RTD (temperature compensation); General scenarios (such as municipal sewage and neutral solutions), without the need for frequent electrolyte replenishment;

The PH4F/PH4FT anti HF corrosion pH sensor is made of anti HF glass material, which can withstand low pH (2-11) and HF concentration (≤ 500 ppm at pH 2); PH4FT with RTD; Scenarios containing hydrofluoric acid (such as semiconductor cleaning, fluorine chemical industry);

PH4C/PH4CT special chemical pH sensor has a wide pH range (0~14) and built-in pressurized gel electrolyte (initial 250 kPa) to prevent medium infiltration; PH4CT with RTD; Strong acid-base and high viscosity media (such as chemical reaction vessels and acid-base neutralization processes);

OR4P/OR4C ORP sensor OR4P (polymer electrolyte, platinum wire electrode), OR4C (pressurized gel, platinum ring electrode); OR4P: Universal oxidation-reduction scenarios (such as wastewater treatment and disinfection); OR4C: Pollution prone scenarios (such as sulfide containing solutions);

PH4FE fermentation specific pH sensor long axis design (120/200mm), open electrolyte replenishment port, suitable for deep measurement in fermentation tanks; The biological fermentation process (such as pharmaceutical and food fermentation) requires regular replenishment of electrolytes;

image.png

Detailed explanation of technical specifications

1. Basic measurement parameters

Parameter category specification details (taking typical models as examples)

PH measurement range: PH4P/PH4CT 0~14 pH, PH4F 2~11 pH;

Accuracy: Slope ≥ 96% (25 ℃), asymmetric potential ± 15 mV;

Response time: t ₉₀<15 seconds (pH 7 → 4 step);

ORP measurement range: -1500~+1500 mV;

Electrode material: OR4P (platinum wire), OR4C (platinum ring);

Reference system: Ag/AgCl (containing KCl electrolyte);

Temperature adaptation without RTD model: -20~70 ℃ (ambient), process temperature varies from 0~105 ℃ depending on the model;

Model with RTD (such as PH4PT): Built in Pt1000 (-20~200 ℃) for temperature compensation;

Pressure adapted atmospheric pressure model (PH4P/PH4F): maximum immersion depth of 3m;

Pressure model (PH4C/OR4C): Initial pressure of 250 kPa, gradually decreasing with use, to avoid process pressure exceeding the internal pressure of the sensor;

Contact material body: borosilicate glass/HF resistant glass;

Electrolyte: PH4P (polymer), PH4C (high viscosity gel) PH4FE(3M KCl-LR);

Sealing components: Fluororubber (FPM)/Perfluoroelastomer (FFKM, optional/PF);

There is no clear IP rating for protection and installation, and it is necessary to cooperate with brackets (such as PH8HS/PH8HF) to achieve waterproofing; The installation angle should be ≥ 15 ° (horizontal upward) to avoid residual bubbles; Prohibit outdoor or pipe hanging use;

2. Key operating condition limitations

Some models have strict operating conditions restrictions, and when selecting, special attention should be paid to:

PH4F/PH4FT (anti HF): The upper limit of HF concentration increases with pH (500 ppm at pH 2, 10000 ppm at pH 4), and the upper limit of temperature is 80 ℃;

PH4C/PH4CT/OR4C (pressurized): The process pressure should be ≤ the internal pressure of the sensor (initial 250 kPa), and the internal pressure can be determined by the "gas layer length" of the thin tube inside the sensor (the shorter the gas layer, the higher the internal pressure);

PH4FE (fermentation specific): Only compatible with customized brackets, prohibited from being paired with PH8HS/PH8HF universal brackets, and the electrolyte replenishment port should be regularly opened to check the liquid level;


Selection guide: Model and suffix code

1. Core selection dimensions

The selection should clarify the three dimensions of measurement parameters (pH/ORP), operating conditions (temperature/pressure/corrosiveness of the medium), and supporting equipment (transmitter/bracket). After prioritizing the matching model, the detailed configuration should be determined through suffix codes:

Example of key considerations for selection dimensions (such as chemical HF scenarios)

Choose PH4 series for pH measurement parameters and OR4 series for ORP measurement parameters; PH measurement with HF → PH4F;

If the temperature compensation fluctuates greatly (>5 ℃), choose the RTD model (such as PH4FT), otherwise choose the basic model (such as PH4F); Process temperature fluctuates between 20~80 ℃ → PH4FT;

For the installation bracket, choose PH8HS for immersion type and PH8HF for flow type, which require corresponding adapters (such as S3 stainless steel adapter); Pipeline installation → PH8HF bracket+PH4F+/S3 (stainless steel adapter, acid resistant);

Cable and terminal cable length (03=3m, 05=5m, etc.), terminal type matching transmitter (such as E-pin terminal compatible with FLXA202); Transmitter distance sensor 5m → PH4FT-05-E;

Choose FFKM (/PF) as the sealing material for organic solvents/high-temperature alkali, and fluororubber (default) for ordinary scenarios; Scenario containing ethanol → PH4F+/PF;

2. Meaning of suffix codes

The suffix code is used to determine the adapter material, cable length, terminal type, seal and other details of the sensor. The core code meaning is as follows:

Core options for suffix code classification

/S3//PP/PV adapter material/S3 (SUS316 stainless steel, acid resistant),/PP (polypropylene, neutral scenario),/PV (rigid polyvinyl chloride, low-cost);

/HPV//TN special adapter/HPV (heat-resistant polyvinyl chloride, upper limit of 80 ℃),/TN (titanium material, strong corrosion scenario);

/PF sealing material is perfluoroelastomer (FFKM), suitable for organic solvents and high-temperature alkalis (such as NaOH solution above 80 ℃);

-The cable length numbers such as 03/-05/-10 represent the length (unit: m), such as -03=3m, with a maximum length of 20m; -00 indicates no cable (terminal box required);

D/E/F/G terminal types D (fork shaped terminal, compatible with PH400G), E (pin terminal, compatible with FLXA202), F/G (ring terminal, compatible with FLXA21);

image.png

Installation and wiring process

1. Preparation before installation

(1) Unpacking and Inspection

Confirm that the appearance of the sensor is undamaged (glass body, cable without cracks), and the model and suffix code (such as PH4F-05-E/S3) are consistent with the order;

Check the integrity of attachments: storage cap (including protective liquid), O-ring (default fluororubber, optional/PF), adapter (such as/S3);

When removing the storage cap, use a screwdriver to unscrew the screw at the blue gasket to avoid damaging the glass electrode; Check the "gas layer length" of PH4C/OR4C (confirm that the internal pressure is normal).

(2) Installation site selection requirements

Avoid areas where bubbles gather (such as at the top of pipelines), dead zones, or locations with high flow rates (>2 m/s) to prevent response delays or electrode wear;

Anti HF models (PH4F/PH4FT) should be kept away from strong oxidizing media (such as concentrated nitric acid) to avoid accelerated glass corrosion;

The installation in hazardous areas must comply with the IEC 60079-14 standard, and as a "simple device", it should be matched with an isolated transmitter (such as FLXA202) with a grounding resistance of ≤ 1 Ω.

2. Core installation steps (taking the flow bracket PH8HF as an example)

(1) Adapter and O-ring assembly

Select adapter: Choose the material based on the corrosiveness of the medium (such as S3 stainless steel adapter for acidic medium), and insert the O-ring (default FPM or optional/PF) into the adapter groove;

Pre installed sensor: Thread the sensor through the bracket fixing nut, insert the adapter, and ensure that the glass electrode is completely in contact with the medium channel (without air residue);

Tighten and fix: Tighten the nut clockwise to the O-ring compression seal (to avoid damaging the glass due to over tightening). For medium pressure models (PH4C/OR4C), it is necessary to confirm that the process pressure is ≤ the internal pressure of the sensor.

(2) Cable and terminal connection

The sensor cable contains 4-5 core wires (with an additional 1 core for RTD models), which need to be connected to the transmitter (such as FLXA202) according to the terminal definition. The wiring method is consistent for different terminal types:

Cable core function corresponding terminal (FLXA202 as an example) Remarks

The pH/ORP indicator electrode (GE) transmits measurement signals to terminal 15, ensuring that the wiring is secure and avoiding interference;

The reference electrode (RE) terminal 13 forms a circuit with the indicator electrode and needs to be grounded separately;

The grounding electrode (SE) terminal 14 must eliminate the grounding potential difference and be reliably grounded (grounding resistance ≤ 1 Ω);

RTD (T1/T2, with RTD model) terminals 11/12 are only available for PH4PT/PH4FT/PH4CT and are used for temperature compensation;

VP connector operation: Rotate the sensor connector to align the groove with the cable connector protrusion, gently insert and tighten the nut (only tighten the plastic part to avoid glass damage);

Terminal box usage: WTB10 terminal box is required for long-distance installation (>10m), with a total cable length of ≤ 20m to avoid signal attenuation.

image.png

Operations and Calibration

1. Daily maintenance

(1) Electrolyte replenishment and replacement

PH4P/PH4F/OR4P (polymer/gel type): there is no need to supplement electrolyte, and the sensor is replaced as a whole after its service life expires (usually 1-2 years);

PH4C/OR4C (pressurized type): The initial internal pressure is 250 kPa, which drops to about 125 kPa after 1 year of use. If the process pressure exceeds the internal pressure and the medium infiltrates, causing the sensor to fail, it needs to be replaced in advance;

PH4FE (fermentation specific): Regularly open the electrolyte replenishment port and replenish 3M KCl-LR solution to the liquid level line to avoid dry burning.

(2) Electrode cleaning

Choose the cleaning method based on the type of medium contamination, only clean the sensor tip (to avoid damaging the cable/connector):

Inorganic dirt (scale, salt): Use a soft cloth dipped in 1-2% dilute hydrochloric acid to wipe, and then rinse with pure water;

Organic dirt (oil, biofilm): Soak in neutral detergent solution (30 minutes to 2 hours), or use protease solution (such as hydrochloric acid solution containing gastric protease) in fermentation scenarios;

ORP electrode oxidation: Use a soft cloth dipped in toothpaste (mild abrasive) to wipe the platinum wire/platinum ring to remove the oxide layer.

2. Calibration process

(1) PH sensor calibration (two-point calibration method)

Prepare buffer solution: Select two points that are close to the process pH (such as pH 4.01+6.87, or pH 6.87+9.18), with the same temperature as the process;

Clean the sensor: Rinse the sensor with pure water to absorb surface moisture (avoid dilution with buffer solution);

First point calibration: Immerse in the first buffer solution (such as pH 6.87), wait for the reading to stabilize, and then follow the transmitter (such as FLXA202) prompts to perform "zero point calibration";

Second point calibration: Rinse with pure water and immerse in a second buffer solution (such as pH 4.01), perform "slope calibration", and ensure that the slope is ≥ 96%;

Verification: After calibration, return the first buffer solution with an error of ≤ 0.02 pH. Otherwise, clean and calibrate again.

(2) ORP Sensor Calibration (Quinone Hydroquinone Standard Method)

Prepare standard solution: Dissolve 1g of quinone hydroquinone powder in 200mL of pH 7.00 buffer solution and stir until saturated;

Calibration operation: Immerse the ORP sensor in a standard solution, wait for the reading to stabilize, and then enter the theoretical value according to the transmitter prompt (ORP=88 mV, rH=23.6 at pH 7);

Error allowance: Calibration error ≤ ± 10 mV. If it exceeds the tolerance, the platinum electrode needs to be cleaned and recalibrated.

3. Storage and regeneration

Short term storage (<1 month): Put on a storage cap and inject 1.5-2mL of 3.3M KCl solution to avoid electrode drying;

Long term storage (>1 month): It is recommended to replace the storage solution every 3 months to prevent electrolyte deterioration;

Sensor regeneration: If the sensor is dry or the response slows down, the pH sensor can be soaked in 0.1M NaOH (10 minutes) → 0.1M HCl (10 minutes) → 3.3M KCl (15 minutes); Clean the platinum surface of ORP sensor with abrasive.

image.png

  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board
  • ABB MC91 HESG440588R4 HESG112714/B Wireless Router Modules
  • ABB PPD113-B03-23-111615 Excitation system controller
  • ABB AB91-1 HESG437479R1 HESG437899 Graphics Expansion Module
  • ABB IT94-3 HESG440310R2 HESG112699/B controller
  • ABB NF93A-2 HESG440280R2 HESG323662R1/HESG216665/K Module Controller
  • ABB IW93-2 HESG440356R1 HESG216678/B I/O module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB RB520 Dummy Module For Submodule Slot
  • ABB SR511 3BSE000863R1 SR511 Regulator 24V/5V
  • ABB DSDP140B 57160001-ACX Counter Board
  • ABB T-1521Z High-Performance Industrial Controller
  • ABB R-2521Z Industrial Control Module
  • ABB COM0002 Industrial Communication Module
  • ABB TAS.580.0550G00 Industrial Controller Module
  • ABB TAS.580.0560G00 Industrial Controller Module
  • ABB SPAJ110C Earth-fault relay
  • ABB TP858 3BSE018138R1 Industrial Control Module
  • ABB SD821 3BSC610037R1 Digital Controller
  • ABB 128877-103 High Precision Industrial Control Module
  • ABB CI853-1 communication interface module
  • ABB PM861K01 3BSE018105R1 Processor Module
  • ABB 5SDF1045H0002 IGBT Silicon Controlled Rectifier
  • ABB TC512V1 3BSE018059R1 Bus Module
  • ABB UCD240A101 Industrial Controller Module
  • ABB TC820-1 Industrial Control Module
  • ABB PM820-2 PLC Pulse Counter Module
  • ABB PM820-1 3BSE010797R1 Processor Module
  • ABB TP830 Industrial Automation Control Module
  • ABB 3ASC25H705/7 control module
  • ABB UAD154A Industrial Automation Module
  • ABB PPD113B01-10-150000 3BHE023784R1023 Controller Module
  • ABB UNS2880B-P V1 Digital I/O Module
  • ABB PFEA112-20 3BSE050091R20 Tension Control amplifier
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Communication
  • ABB PPC380AE02 Industrial Control Module