Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Oil and gas in the age of climate change

来源: | 作者:佚名 | 发布时间 :2023-12-14 | 458 次浏览: | Share:

Rising sea levels, wildfires, heat waves and extreme weather events are already wreaking havoc across the globe and can cost the global economy hundreds of billions of dollars by collapsing infrastructure, reduced crop yields, health problems and lost labor. When most people think about climate change, they tend to think of the oil and gas industry as being most responsible because of their high emissions of carbon dioxide and greenhouse gases. Yet few stop to consider that the ecological impacts that are hurting communities are also having an impact on the fossil fuel industry.

Climate change is making it increasingly expensive for oil and gas companies to operate. In fact, supply threats to the oil and gas industry related to climate change are already beginning to emerge, with more than 600 billion barrels of commercially recoverable oil and gas reserves worldwide (40% of total reserves) at high or extreme risk. According to data published by VeriskMaplecroft, a UK-based global risk and strategy consultancy, climate-related events have disrupted the flow of oil to global markets, with the impact particularly severe in Saudi Arabia, Iraq and Nigeria.

This news is worrying given the growing number of signals that oil supplies are peaking. A growing number of U.S. industry executives expect the U.S. economy to grow. With rising costs and limited supplies of labor and equipment constraining U.S. shale producers' efforts to quickly ramp up output, expectations for a renewed shale boom are rapidly being dashed.

Thankfully, the oil and gas industry is working to mitigate climate change.

Opportunities for carbon capture

While trees and other plants naturally remove carbon dioxide from the atmosphere, most climate change experts now agree that we don't have the ability to plant enough and grow fast enough to limit the damage.

Carbon capture is a proposed technology to limit global warming and climate change. Both the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA) have identified carbon capture, utilization, and storage (CCUS) technology as an ideal solution for many industries that struggle to reduce emissions, such as aviation, hydrogen production, and cement from fossil fuels.

Unfortunately, when it comes to investing in CCUS, the world is woefully short: According to data published by the International Energy Agency (IEA), only 35 commercial facilities worldwide apply CCUS to industrial processes, fuel conversion, and power generation, with a total annual capture capacity of about 4.5 billion tons of CO2. However, McKinsey & Company estimates that global CCUS CO2 uptake needs to increase 120-fold, to at least 4.2 gigatons of CO2 per year, to meet the net zero emissions commitment by 2050.

Nevertheless, the oil majors have begun to act with great fanfare, though ultimately more to extend the life of oil and gas fields than to mitigate the effects of climate change.

Over the past few years, oil majors have begun investing heavily in CCUS, which many see as just a way for oil majors to extend the life of oil fields because the captured CO2 is used in enhanced oil recovery (EOR).

Two weeks ago, ExxonMobil CEO Darren Woods told investors that the company's low-carbon business has the potential to surpass its traditional oil and gas business within a decade and generate hundreds of billions of dollars in revenue. Woods outlined a forecast that the company could reach billions of dollars in revenue over the next five years. Tens of billions of dollars in 5 to 10 years, hundreds of billions of dollars after the initial 10 years of growth. Woods, however, said whether ExxonMobil can meet its goals will depend on regulatory and policy support for carbon pricing and the cost of reducing greenhouse gas emissions, among other changes.

Exxonmobil believes that by entering into predictable, long-term contracts with customers aiming to reduce their own carbon footprint, this will lead to "more stability or less cyclicality" and less vulnerability to fluctuations in commodity prices. Exxonmobil, for example, recently signed a long-term contract with industrial gases company Linde for carbon dioxide emissions related to Linde's planned Clean hydrogen project in Beaumont, Texas. Exxonmobil will transport and permanently store up to 2.2 million tons of CO2 per year from Linde's plant. Back in February, Linde unveiled a comprehensive $1.8 billion plan that would include a self-thermal reforming unit with carbon capture and a large air separation plant to supply clean hydrogen and nitrogen.

Schlumberger New Energy

In February, oilfield services giant Schlumberger discussed its new Schlumberger New Energy with Bloomberg New Energy Finance (BNEF). According to Gavin Rennick, president of Schlumberger New Energy, New Energy is expected to reach $3 billion in revenue by the end of this decade and at least $10 billion by the end of the next decade. Schlumberger will focus on five key market segments, including carbon emission solutions, hydrogen, geothermal and geothermal energy, energy storage, and critically important minerals, with a minimum target market of $10 billion for each segment.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card