Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Ultra-supercritical power generation, what is the "super power"?

来源: | 作者:佚名 | 发布时间 :2023-12-23 | 724 次浏览: | Share:

Zigzag development through more than 70 years

The concept of ultra-supercritical power generation is not new in the field of technology, since it was originally proposed, it has been developed in the world for more than 70 years, which can be roughly divided into three stages.

The first stage, starting from the 1950s, was represented by the United States, Germany and the Soviet Union, and directly developed ultra-supercritical power generation technology without experiencing the transition of supercritical parameters. However, due to the frequent failure of many ultra-supercritical units, from the late 1960s, these countries generally reduced the steam parameters of newly built units to the supercritical range.

The second stage, from about the early 1980s, supercritical technology was consolidated and developed. With the development of material technology, especially the substantial improvement of the material properties of boilers and steam turbines, and the in-depth understanding of the water chemistry of power plants, the series of failures encountered by early supercritical units have been overcome one by one.

In the third stage, from about the 1990s, ultra-supercritical power generation technology was reborn. With the increasingly stringent international environmental requirements, as well as the successful development of new materials and the maturity of conventional supercritical technology, the development of ultra-supercritical technology has better conditions. Represented by Japanese (Mitsubishi, Toshiba, Hitachi) and European (Siemens, Alstom) technologies, the use of higher steam temperature and pressure has become the mainstream trend of thermal power technology development under the premise of ensuring high reliability and high availability of units.

In China, the application of ultra-supercritical technology started late, but the development speed is rapid, and has gone through the entire process of technology transfer in the early stage and independent research and development in the later stage. In the second half of 2003, the Ministry of Science and Technology included the selection of parameters and capacity of ultra-supercritical units in the "863" scientific and technological research topics, and began the development of ultra-supercritical thermal power units. Subsequently, Harbin Electric Group, Shanghai Electric Group and Dongfang Electric Group introduced 1000 MW ultra-supercritical technology from Japan's Mitsubishi, France's Alstom, Germany's Siemens, Japan's Hitachi and other companies, and began to build 1000 MW ultra-supercritical units. At present, ultra-supercritical efficient power generation technology and demonstration projects have been promoted across the country, accounting for 26% of the total installed capacity of coal power. China has become the country with the fastest development, the largest number, the largest capacity and the most advanced operation performance of 1000MW ultra-supercritical units in the world.

Material innovation research and development look forward to breakthroughs

In order to further reduce energy consumption and reduce pollutant emissions, improve the environment, with the support of the development of the material industry, ultra-supercritical units in various countries are developing in the technical direction of higher parameters. This requires a further increase in the temperature and pressure of the steam at the boiler outlet. Current supercritical alloy materials can withstand up to 630 ° C temperature range. To further increase the steam temperature of the boiler outlet, it is necessary to develop more advanced alloy materials with higher temperature resistance, and through the research and development of supporting welding, manufacturing process and other systems, to minimize the use of expensive high-temperature alloy materials on the basis of ensuring safety. Therefore, material cost and key equipment manufacturing process are currently the biggest obstacles affecting 700℃ advanced ultra-supercritical power generation technology.

At present, the research and development of 700℃ advanced ultra-supercritical technology being carried out by the world's major economies can be considered as an important direction of the development of ultra-supercritical technology. In this regard, the European Union started the first, officially launched the AD700 advanced ultra-supercritical power generation program in January 1998. The original plan was to realize the commercial operation of the unit around 2011 through the operation and technical improvement of the demonstration power station. However, due to the high temperature alloy steel and austenitic steel prices are expensive, and the relatively cheap ferritic steel performance has not reached the expected target, the investment of the entire project will be greatly increased, resulting in the delay of the plan. There are currently no concrete plans to build demonstration plants in the EU.

The United States, Japan and other countries also have their own plans in the development of advanced ultra-supercritical technology, and there are no relevant reports of commercialization.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card