Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Types and prevention measures of mine geological disasters

来源: | 作者:佚名 | 发布时间 :2023-12-27 | 533 次浏览: | Share:

4, mine environmental chemical pollution disaster

The waste residue, waste water and waste gas produced by mining and mineral processing cause environmental pollution, which is also a form of mining geological disasters. These wastes are not effectively treated, directly dumped or disordered discharge, will cause environmental pollution and public hazards. This kind of environmental disaster will also lead to soil erosion, land sand, salinization, groundwater flow and other related secondary disasters. The consequences of these pollution incidents often affect the physical conditions of people and animals for a long time, leading to the unsustainable development of the national economy, resources and environment.

4.1 Disaster of end warehouse and field warehouse

The mining of many mines is accompanied by the existence of mines and tailings ponds. The instability of the reservoir is mainly due to the huge damage caused by the debris flow after the tailings dam can not withstand the pressure. The dam break of tailing reservoir often occurs because of the increasing pressure on the stability of the dam body, or because of the overflow of waste ore liquid and the dam body piping. Tailings break the levee brings immeasurable disastrous consequences to the production and life of the people in the mining area, but also causes pollution and long-term harm to the local soil and water environment.

4.2 Soil and water environmental pollution

Mining wastewater, mine underground water, mineral processing, smelting sewage, tailings leakage, etc., will cause pollution of mine water sources and groundwater, while the existence of heavy metal pollution elements, toxic and harmful elements in the waste liquid will also remain in the soil for a long time, forming persistent environmental disasters. The amount of mining wastewater is large, most of which is too late to be treated, and is directly discharged into environmental water bodies in a disorderly manner, which directly or indirectly causes regional soil and water environmental pollution, resulting in long-term pollution of surface water, underground water sources and farmland in mining areas. Such harm is often latent, and it is more harmful.

4.3 Land degradation

Open-pit mining is one of the factors affecting soil erosion and land desertification. In the process of open-pit mining and excavation mining, the destruction of surface vegetation, soil slope and the expansion of tailings will lead to soil erosion and land degradation. And a lot of mining drainage, resulting in salinization of land.

Exploration methods of mine geological hazards

Because the geological disasters of mines occur in the deep, remote sensing information technology and physical exploration methods are used in the exploration.

1. Integrated method of Earth information technology

The current information technology mainly uses remote sensing set "3S" technology to grasp the possible distribution, occurrence location and region of geological disasters in time. For example, global satellite positioning system is used to accurately locate the high-risk points of geological disasters, and remote sensing satellites are used to perform superposition analysis to predict the trend of disasters.

2. Geophysical exploration methods

It mainly refers to the application of physical means to detect the relevant information of rock and soil circles, determine the possible disaster concomitances such as gob, fault displacement, magnetic field change, and so on, and analyze and predict geological disasters in advance.

The methods of geophysical prospecting for mine geological hazards mainly include high-density resistivity method, apparent resistivity method, transient electromagnetic method, shallow seismic method and so on. These methods are important technical means to predict potential mine geological hazards.

3. Environmental chemical survey method

In the process of mine geological disaster prevention, people often use geochemical exploration methods. For example, in the monitoring of environmental pollution in mining areas, chemical detection methods have irreplaceable advantages. The application of this method can effectively determine the pollution factors, predict the pollution trend, trace the pollution source, divide the pollution area, and provide important scientific basis and technical support for the formulation of pollution control plan.

Prevention and control measures of geological disasters in mines

To sum up, geological disasters in mines have their own characteristics due to the characteristics of time and space and the conditions of production. With the gradual application of geological exploration means in mines, we should take effective prevention and control measures according to the above classification and exploration means in order to prevent the occurrence of geological disasters in mines and effectively reduce casualties and property losses.

According to the characteristics of mining geological disasters, some mining geological disasters we can prevent subjectively, some geological disasters caused by natural incentives, we can not effectively prevent, so we develop specific prevention and control measures should include measures such as:

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card